Cho hình chóp S.ABC có SA ⊥ (ABC) tam giác ABC đều cạnh a và SA = a (tham khảo hình vẽ bên). Tang của góc giữa đường thẳng SC và mặt phẳng (SAB) bằng
A. 3 5
B. 3 2 2
C. 1.
D. 1 2
Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng a, gọi I là trung điểm của AB, hình chiếu của S lên mặt phẳng (ABC) là trung điểm H của CI, góc giữa SA và mặt đáy bằng 45 ° (tham khảo hình vẽ bên dưới). Khoảng cách giữa 2 đường thẳng SA và CI bằng:
A. a 21 14
B. a 77 22
C. a 14 8
D. a 21 7
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên SBC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt đáy. Khoảng cách giữa hai đường thẳng SA và BC là
A. 2 a 2 .
B. a 2 .
C. 3 a 4 .
D. 3 a 2 .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên SBC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt đáy. Tính theo a khoảng cách giữa hai đường thẳng SA và BC.
A. a 22 11
B. a 4 3
C. a 11 22
D. a 3 4
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cạnh bên SA vuông góc với mặt phẳng đáy, góc tạo bởi hai mặt phẳng (ABC) và (SBC) bằng 60 0 (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng AB và SC bằng :
A. a
B. a 3 3
C. a 2 2
D. a 3 2
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, mặt bên (SBC) là tam giác đều và nằm trong mặt phẳng vuông góc đáy (tham khảo hình vẽ bên). Tang góc giữa đường thẳng SA và mặt phẳng (ABC) bằng
A. 3
B. 6 3
C. 6 2
D. 3 3
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, SA= 3 a và vuông góc với mặt đáy. Gọi M là trung điểm cạnh SB (tham khảo hình vẽ bên). Côsin góc giữa hai đường thẳng AM và SC bằng
A. 5 16
B. 11 16
C. 5 8
D. 3 8
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên bằng SA vuông góc với đáy, SA=a. Tính khoảng cách từ A đến mặt phẳng (SBC)?
A. d = a 3 2
B. d = a 2 2
C. d = a 6 2 .
D. d = a 6 3
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên SA vuông góc với đáy, S A = a . Tính khoảng cách từ A tới mặt phẳng (SBC).
A. d = a 3 2
B. d = a 2 3
C. d = a 6 2
D. d = a 6 3