Cho hình chóp S.ABC có đường cao SA = h và đáy ABC là tam giác vuông cạnh huyền BC = a. Một mặt trụ đi qua hai điểm B, C và có một đường sinh là SA. Khi đó bán kính mặt trụ bằng
A. a
B. a 2 + h 2
C. ah
D. a 2
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, AB=BC=a và ∠ A B C = 120 ° . Cạnh bên SA vuông góc với mặt phẳng đáy và SA=2a. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp S.ABC
A. a 2 5
B. a 2
C. a 5
D. a 2 4
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với mặt phẳng (ABC) và AB=2,AC=4,SA= 5 . Mặt cầu đi qua các đỉnh của hình chóp S.ABC có bán kính là
A. R = 5 2
B. R = 5
C. R = 10 3
D. R = 25 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với mặt phẳng ABC và AB = 2, AC = 4, S A = 3 . Mặt cầu đi qua các đỉnh của hình chóp S.ABC có bán kính
A. R = 5 2
B. R=5
C. R = 10 3
D. R = 25 2
Hình chóp S.ABC có đáy là tam giác ABC vuông tại A, có SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b, AC = a. Mặt cầu đi qua các đỉnh có bán kính r bằng:
A. 1 2 a 2 + b 2 + c 2
B. 2 a 2 + b 2 + c 2
C. 2 a + b + c 3
D. a 2 + b 2 + c 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B với A B = a , B C = a 3 . Cạnh SA vuông góc với mặt phẳng đáy và S A = 2 a 3 . Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC
A. R = a
B. R = 3a
C. R = 4a
D. R = 2a
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân ở B, A C = a 2 . SA vuông góc với mặt phẳng (ABC) và (SA)=a. Gọi G là trọng tâm của tam giác SBC. Một mặt phẳng đi qua hai điểm A, G và song song với BC cắt SB, SC lần lượt tại B’ và C’. Thể tích khối chóp S.A’B’C’ bằng:
A. 2 a 3 9
B. 2 a 3 27
C. a 3 9
D. 4 a 3 27
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho HA=2HB. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60°. Tính khoảng cách d giữa hai đường thẳng SA và BC theo a.
A. d = a 42 8
B. d = a 21 12
C. d = a 42 12
D. d = a 462 66
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho H A = 2 H B . Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60°. Tính khoảng cách d giữa hai đường thẳng SA và BC theo a.
A. d = a 42 8
B. d = a 21 12
C. d = a 42 12
D. d = a 462 66