Cho hình chóp S. ABCD có đáy ABCD là hình thang .AD//BC và AD = 2BC .Gọi E và F lần lượt là trung điểm của SA và AD , I là giao điểm của SD và mặt phẳng (BCE). Chứng minh CI // (BEF)
Cho hình chóp S.ABCD có đáy là hình thang ABCD (đáy lớn AB). Gọi E, F lần lượt là trung điểm của SA và SB. Chứng minh EF // CD
Cho hình chóp S.ABCD, ABCD là hình thang, đáy lớn AD=2BC. Gọi M, N lần lượt là trung điểm của AD, CD. a/. Chứng minh: MN//(SAC). b/. Gọi K SB sao cho KB 2KS . Xác định giao điểm của đường thẳng SA và (MNK). c/. Gọi G là trọng tâm tam giác CDM. Chứng minh KG//SD.
Cho hình chóp S.ABCD, có đáy ABCD là hình thang có đáy lớn AD . Gọi E, F lần lượt là trung điểm của SA, SD.
a) Tìm giao tuyến của các cặp mặt phẳng: (SAC) và (SBD), (SAD) và (SBC).
b) Chứng minh EF// (ABCD) và EF// (SBC)
c) Gọi K là giao điểm của AB và CD. Tìm M, N lần lượt là giao điểm của SB và (CDE); SC và (EFM). Từ đó, tìm thiết diện của hình chóp cắt bởi mặt phẳng (KEF)
d) Cho AD=2BC. Tính tỉ số diện tích của tam giác KMN và tam giác KEF .
giúp mình giải câu d với ạ
Cho hình chóp S.ABCD có đáy ABCD là hình thang,AD là đáy lớn và AD 2BC . Gọi M, N lần lượt là trung điểm của SB, SC, O AC BD .
a) Tìm giao tuyến của ABN và SCD.
b) Tìm giao điểm P của DN và SAB .
c) Gọi K AN DM . Chứng minh 3 điểm S, K, O thẳng hàng. Tính KS KO .
Cho hình chóp S.ABCD có ABCD là hình thang cân (AD//BC) và BC = 2AD = 2a, A B C ^ = 60 ° . Gọi M, N, E lần lượt là trung điểm của AB, CD, SA. SA ⊥ (ABCD) và SA = a 2 . Khoảng cách giữa hai mặt phẳng (MNE) và (SBC) là:
A. 2 a 66 11
B. a 66 11
C. a 66 22
D. 3 a 66 22
Cho hình chóp S ABCD . có đáy ABCD là hình bình hành tâm O. Gọi M.N.P lần lượt là trung điểm AD,BC và SB a, tìm giao điểm Q của SA và (MNP) b, chứng minh SD//(MNP) và (SMC)//(ANP) c, gọi H=BD ∩ AN, K=BD ∩ MC, i= PK ∩ SH. tính tỉ số SΔSLK/SΔSLP
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA ⊥ (ABCD) và S A = a 15 Gọi M, N lần lượt là trung điểm của BC và CD: Chứng minh (SAC) ⊥ (SBD).
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD. Gọi M, N lần lượt là trung điểm của AD và BC; gọi G là trọng tâm tam giác SAB. Thiết diện của hình chóp với mặt phẳng (MNG) là hình bình hành thì
A. AB = 3CD
B. AB = 2CD
C. CD = 3AB
D. CD = 2AB