Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình chóp  S . A B C D có đáy là hình thang vuông tại AB. Biết A D = 2 a , A B = B C = S A = a . Cạnh bên SA vuông góc với mặt phẳng đáy, gọi M là trung điểm cạnh AD. Tính khoảng cách h từ M đến mặt phẳng (SCD).

A. h = a 3 .

B. h = a 6 3 .

C. h = a 6 6 .

D.  h = a 3 6

Cao Minh Tâm
7 tháng 12 2017 lúc 10:31

Đáp án C

Theo dữ kiện đề bài cho, dễ dàng chứng minh được ΔACD vuông tại cân C và A C = A D 2 = a 2 .

C D ⊥ A C C D ⊥ S A ⇒ C D ⊥ S A C ⇒ S A C ⊥ S C D

Mà S A C ∩ S C D = S C , từ A kẻ A H ⊥ S C . Khi đó d A ; S C D = A H .

Tam giác SAC vuông tại

 A: 1 A H 2 = 1 S A 2 + 1 A C 2 = 1 a 2 + 1 2 a 2 = 3 2 a 2 ⇒ d A ; S C D = A H = a 2 3

Mặt khác: A D ∩ S C D = D  và M là trung điểm AD nên:

d M ; S C D d A ; S C D = M D A D = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C D = a 6 6


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết