Cho hình chóp S . A B C D có đáy là hình thang vuông tại A và B. Biết A D = 2 a , A B = B C = S A = a . Cạnh bên SA vuông góc với mặt phẳng đáy, gọi M là trung điểm cạnh AD. Tính khoảng cách h từ M đến mặt phẳng (SCD).
A. h = a 3 .
B. h = a 6 3 .
C. h = a 6 6 .
D. h = a 3 6
Cho hình chop S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết A D = 2 a , A B = B C = S A = a . Cạnh bên SA vuông góc với mặt đáy, gọi M là trung điểm của AD. Tính khoảng cách h từ M đến mặt phẳng (SCD).
A. h = a 3 .
B. h = a 6 6 .
C. h = a 3 6 .
D. h = a 6 3 .
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B; AB = BC = a; AD = 2a; S A ⊥ A B C D . Góc giữa mặt phẳng ( SCD ) và ( ABCD ) bằng 45 o . Gọi M là trung điểm AD. Tính theo a thể tích V khối chóp S.MCD và khoảng cách d giữa hai đường thẳng SM và BD
A. V = a 3 2 6 d = a 22 11
B. V = a 3 6 6 d = a 22 11
C. V = a 3 2 6 d = a 22 22
D. V = a 3 6 6 d = a 22 22
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên S C = a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 . Tính thể tích V của khối chóp S.ABCD?
A. V = 8 a 3 6 .
B. V = 12 a 3 6 .
C. V = 4 a 3 6 .
D. V = 24 a 3 6 .
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Cạnh SA=2a và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh AB và α là mặt phẳng qua M và vuông góc với AB. Diện tích thiết diện của mặt phẳng với hình chóp S.ABCD là
A. S = a 2
B. S = 3 a 2 2
C. S = a 2 2
D. S = 2 a 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = a , A D = 2 a . Cạnh bên SA vuông góc với mặt phẳng đáy và cạnh bên SC tạo với đáy một góc 60 ° . Gọi M, N là trung điểm các cạnh bên SA và SB. Khoảng cách từ điểm S đến mặt phẳng (DMN) bằng
A. 2 a 465 31
B. a 31 60
C. a 60 31
D. 2 a 5 31
Cho hình chóp SABCD có đáy là hình thang vuông tại A, B, AD= a, AB=2a, BC=3a,SA=2a . H là trung điểm cạnh AB,SH là đường cao của hình chóp SABCD Tính khoảng cách từ điểm Ađến mp (SCD)
A. a 30 7
B. a 30 7
C. a 13 10
D. a 13 7
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AB. Biết rằng AB= 2a, AD = DC = CB = a, cạnh bên SA vuông góc với đáy, mặt phẳng (SBD) tạo với đáy một góc 45 0 Gọi O là trung điểm AB. Tính khoảng cách d từ điểm O đến mặt phẳng (SBD).
A. d = a 2 4
B. d = a 4
C. d = a 2
D. d = a 2 2
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết A B = B C = a , A D = 2 a , S A = 3 a 2 2 , S A ⊥ A B C D . M, N theo thứ tự là trung điểm của SB, SA. Khoảng cách từ N đến mặt phẳng (MCD) bằng:
A. a 3
B. a 4
C. 4 a 3
D. 3 a 4