Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.
A. AD BC . B. MQ PN . C. MN QP . D. AB DC .
Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng
A. HA CD và AD CH .
B. HA CD và DA HC .
C. HA CD và AD HC .
D. HA CD và AD HC và OB OD .
Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng
A. 1. B. 2. C. 2. D. 3.
Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm 4 , 3 . Độ dài của vectơ AB là
A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm
Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng
A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a
Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB . Độ dài vectơ AC là
A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c
Cho 4 điểm A, B, C, D không có 3 điểm nào thẳng hàng thỏa mãn \(\overrightarrow{AD}\) = \(\overrightarrow{BC}\). Khi đó ta có:
A. ABCD là hình bình hành. B. ABDC là hình bình hành.
C. ACBD là hình bình hành. D. ADBC là hình bình hành.
Cho hình bình hành ABCD với M và N lần lượt là trung điểm của BC và AD .Tìm tổng của hai vector sau:
a) AD→ và DC→
b)NA→ và ND→
c)NC→ và MC→
d)AM→ và CD→
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Khi đó ABCD là hình bình hành nếu
A. M N → = A B →
B. M N → = D C →
C. M N → = A B → và M N → = D C →
D. D C → = A B →
Cho hình vuông ABCD với P là giao điểm hai đường chéo BD và AC, M là giao điểm thỏa mãn vecto MO= vecto DC + vecto OB. Mệnh đề nào dưới đây đúng A. M đối xứng với C qua B B. M là trung điểm của AD C. M đối xứng với V qua D D. M đối xứng với A qua B
cho hình bình hành ABCD tâm O, M là trung điểm OB
a, chứng minh vecto AB- vecto DA +vecto CD=vecto AD
b, điểm N thuộc BC thỏa mãn vecto BN=k vectoBC , tìm k để A,M,N thẳng hàng
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu
cho hình bình hành ABCD có tâm O.Gọi M,N lần lượt là trung điểm của AD,BC.Tìm tất cả các vect u thỏa mãn vectơ u = 2ON
Câu 1: Cho hình bình hành ABCD, M là trung điểm cạnh CD, N là trung điểm đoạn BM. Chứngminh rằng : \(\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\). Câu 2. Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3), B (0;2), C (2;1)a) Tìm tọa độ điểm M trên Ox sao cho tam giác AMB vuông tại M.b) Tìm tọa độ hình chiếu của A lên BC. Câu 3. Cho tam giác ABCđều cạnh a , có AH là đường trung tuyến. Tính \(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|\). Câu 4. Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất? Câu 5. Để kéo đường dây điện băng qua một cái hồ hình chữ nhậtvới độ dài AB =140m , AD = 50m. Người ta dự định làm cột điện liên tiếp thẳng hàng và cách đều nhau. Cột thứ nhất nằm trên bờ AB và cách đỉnh A một khoảng bằng 10m. Cột thứ năm nằm trên bờ CD và cách đỉnh C một khoảng bằng 30m. Tính khoảng cách từ cột thứ tư đến bờ AD.