Cho hình bình hành ABCD với đường chéo AC>BD. Gọi E và F lần lượt là chân đường vuông góc kẻ từ C đến các đường thẳng AB và AD; gọi G là chân đường vuông góc kẻ từ B đến AC.
a) Chứng minh rằng 2 tam giác CBG và ACF đồng dạng
b)Chứng minh rằng: AB.AE +AD.AF=AC2
Giả sử AC là đường chéo lớn của hình bình hành ABCD. Từ C, vẽ đường thẳng vuông góc CE với đường thẳng AB, đường vuông góc CF với đường thẳng AD (E, F thuộc phần kéo dài của các cạnh AB và AD), Chứng minh rằng AB.AE + AD.AF = A C 2
Gọi AC là đường chéo lớn của hình bình hành ABCD ,E và F lần lượt là hình chiếu của C trên AB và AD , H là hình chiếu của D trên AC
a) Chứng minh rằng : AD.AF=AC.AH
b) AD.AF+AB.AE=AC2
Cho hình bình hành ABCD có Ac là đường chéo lớn. Từ C kẻ CE vuông góc với đường thẳng Ab (E\(\in\)AB) và kẻ CF vuông góc với đường thẳng AD (F\(\in\)AD). Chứng minh \(AB.AE+AD.AF=AC^2\)
cho hình bình hành ABCD có đường chéo AC là lớn nhất .từ C hạ các đường vuông góc CE và CF lần lượt xuống các tia AB,AD .chứng minh rằng AB.AE+AD.AF=AC2
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
Chứng minh rằng : a/ Tứ giác BEDF là hình bình hành ?
b/ CH.CD = CB.CK
c/ AB.AH + AD.AK = AC2.
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a) Chứng minh tứ giác BEDF là hình bình hành.
b) CMR: CH.CD=CB.CK
c) CMR: AB.AH+AD.AK=AC2
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a) Chứng minh tứ giác BEDF là hình bình hành.
b) CMR: CH.CD=CB.CK
c) CMR: AB.AH+AD.AK=AC2
mng giúp mình với ạ<33
Có tam giác ABC vg tại A đg cao AH. Gọi E,F lần lượt là chân đg vg góc kẻ từ H đến AB,AC
a) Tứ giác EAFG là hình gì?Vì sao?
b)Qua A kẻ đg vg góc với È, cắt BC ở I. CM I là trung điểm của BC