a: Xét ΔCEB vuông tại E và ΔABC vuông tại B có
góc C chung
=>ΔECB đồng dạng với ΔBCA
b: \(AC=\sqrt{25^2+20^2}=5\sqrt{41}\left(cm\right)\)
\(BE=\dfrac{25\cdot20}{5\sqrt{41}}=\dfrac{100}{\sqrt{41}}\left(cm\right)\)
a: Xét ΔCEB vuông tại E và ΔABC vuông tại B có
góc C chung
=>ΔECB đồng dạng với ΔBCA
b: \(AC=\sqrt{25^2+20^2}=5\sqrt{41}\left(cm\right)\)
\(BE=\dfrac{25\cdot20}{5\sqrt{41}}=\dfrac{100}{\sqrt{41}}\left(cm\right)\)
Cho tam giác ABC nhọn, có BE,AD là đường cao cắt ở H a) CM tam giác CDA đồng dạng tam giác CEB b) CM HA.HD=HB.HE c) CM tam giác ABC đồng dạng tam giác DEC d) Qua D kẻ đường thẳng vuông góc DE cắt BE tại M. CM góc ABC= góc EMD
Cho tam giác ABC có AB bằng 9cm, AC bằng 12 cm, BC bằng 15 cm Khẻ đường cao AD
a/ chứng minh: tam giác ADB đồng dạng với tam giác CAB
b/ Vẽ đường phân giác BE \((\)E thuộc AC\()\)
Tính EA,EC
c/ Chứng minh AD\(^2\) \(=\) BD. DC
d/ BE cắt AD tại I tính ID
cho tam giác vuông ABCD vuông tại A đường cao AD( D thuộc BC) đường phân giác BE(E thuộc AC) cắt AD tại F
a, CM tam giác BÀ đồng dạng tam giác BDF
b, CM AB^2 = BD.BC
c, CM FD/FA=AE/FC
Cho tam giác ABC vuông tại A vẽ đường cao AH, AB=6 cm, AC=8 cm
a C/m tam giác HBA đồng dạng với tam giác ABC
b Tính BC, AH, BH
Cho tam giác ABC vuông tại góc A có B=2C, AB=3cm. Vẽ đường cao AH (H thuộc AB)
a)CM: tam giác HBA đồng dạng với tam giác ABC
b)Kẻ tia phân giác của góc ABC cắt AH tại D cắt AC tại E. CM:AB2=AE.AC
c)CM: tam giác BHD đồng dạng với tam giác BAE rồi suy ra tỉ số diện tích hai tam giác BHD và BAE
Cho tam giác ABC vuông tại A có AB=12cm,AC=16cm.Vẽ đường cao AH
a)Chứng minh tam giác HBA đồng dạng với tam giác ABC
b)Tính BC,AH,BH.
c)Vẽ đường phân giác AD của tam giác ABC(D thuộc BC).Tính BD,CD
d)Trên Ah lấy điểm K sao cho AK=3.6cm.Từ K kẻ đường thẳng song song BC cắt AB và AC lần lượt tại M và N.Tính diện tích tứu giác BMNC
Câu 1:Cho tam giác ABC vuông tại A (AC>AB) AH là đường cao. Từ trung điểm I của cạnh AC về ID vuông góc với cạnh huyền BC. Biết AB =3cm, AC=4cm
a) Tính độ dài cạnh BC
b) Cm: tam giác IDC đồng dạng tam giác BHA
Câu 2: Cho hình chữ nhật ABCD có AB=8cm, BC =6cm . Vẽ đường cao AH của tam giác ADB
a) Tính DB
b) Cm: tâm giác ADH đồng dạng tam giác ADB
c) Cm: AD^2=DH.DB
d) Cm: tâm giác AHB đồng dạng tam giác BCD
e) Tính độ dài đoạn thẳng DH,AH
Câu 3:Cho tam giác ABC vuông tại A có AB =6cm, AC =8cm .Vẽ đường cao AH
a) Tính BC
b) Cm : tam giác ABC đồng dạng tam giác AHB
c) Cm: AB^2=BH.BC.Tính BH, HC
d) Vẽ phân giác AD của góc A (D thuộc BC). Tính DB
Cho tam giác ABC vuông tại A có AB =12cm, AC=16cm, vẽ đường cao AH
a, Chứng minh: Tam giác HBA đồng dạng với tam giác ABC
b, Tính BC, AH, tính diện tích tam giác ACH
c, Trong tam giác ABC kẻ phân giác AD (D thuộc BC). Trong tam giác ADB kẻ phân giác DF (F thuộc AC):
1) Tính : BD, DC
2) Chứng minh rằng: \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)