Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Cho hàm số y=f(x) liên tục trên R và thỏa mãn \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2}{x^2-4x+3}=2\) 

Tính \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-x-1}{x^2-3x+2}\) 

2) \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-\sqrt{f\left(x\right)+2}}{x^2-3x+2}\)

Giả thiết suy ra \(f\left(1\right)-2=0\Rightarrow f\left(1\right)=2\)

a.

\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2-x+1}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2}{x^2-4x+3}.\dfrac{x-3}{x-2}-\lim\limits_{x\rightarrow1}\dfrac{x-1}{\left(x-1\right)\left(x-2\right)}\)

\(=2.\dfrac{1-3}{1-2}-\dfrac{1}{1-2}\)

b.

\(\lim\limits_{x\rightarrow1}\dfrac{\left[f\left(x\right)-1\right]\left[f\left(x\right)-2\right]}{\left(x-1\right)\left(x-2\right).\left[f\left(x\right)+\sqrt{f\left(x\right)+2}\right]}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2}{x^2-4x+3}.\dfrac{x-3}{x-2}.\dfrac{1}{f\left(x\right)+\sqrt{f\left(x\right)+2}}\)

\(=2.\dfrac{1-3}{1-2}.\dfrac{1}{2+\sqrt{2+2}}\)

\(2=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2}{x^2-4x+3}=\lim\limits_{x\rightarrow1}\dfrac{f'\left(x\right)}{2x-4}=\dfrac{f'\left(1\right)}{-2}\)

\(\Rightarrow f'\left(1\right)=-4\)

Đồng thời \(f\left(1\right)-2=0\Rightarrow f\left(1\right)=2\)

a.

\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-x-1}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\dfrac{f'\left(x\right)-1}{2x-3}=\dfrac{f'\left(1\right)-1}{2.1-3}=\dfrac{-4-1}{-1}=5\)

b.

\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-\sqrt{f\left(x\right)+2}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\dfrac{f'\left(x\right)-\dfrac{f'\left(x\right)}{2\sqrt{f\left(x\right)+2}}}{2x-3}=\dfrac{-4-\dfrac{-4}{2\sqrt{2+2}}}{2.1-3}\)


Các câu hỏi tương tự
Dương Nguyễn
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Xuân Đình Lực
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Nguyễn Xuân Đình Lực
Xem chi tiết
títtt
Xem chi tiết
♥ Aoko ♥
Xem chi tiết
títtt
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết