Cho hàm số f(x) xác định trên ℝ thỏa mãn f ' x = e x + e - x - 2 , f 0 = 5 và f ln 1 4 = 0 . Giá trị của biểu thức S = f - ln 16 + f ln 4 bằng
A. 31 2 .
B. S = 9 2 .
C. S = 5 2 .
D. S = 11 2
Cho hàm số y=f(x) xác định và liên tục trên [1;e] thỏa mãn xf ' ( x ) = x [ f ( x ) ] 2 + 3 f ( x ) + 4 x và f(1) = -3. Tính f(e).
A. 5 2 e
B. - 5 2
C. - 5 2 e
D. 5 2
Cho hàm số f(x) xác định trên R thỏa mãn f' (x)= e x + e - x - 2 , f(0)=5 và f ln 1 4 = 0 .Giá trị của biểu thức S = f - ln 6 + f ln 4 bằng:
A. S= 31/2.
B. S= 9/2.
C. S= 5/2.
D. S= -7/2
Cho hàm số f(x) xác định trên ℝ \ − 2 ; 1 thỏa mãn f ' x = 1 x 2 + x − 2 ; f 0 = 1 3 , và f − 3 − f 3 = 0. Tính giá trị của biểu thức T = f − 4 + f − 1 − f 4
A. 1 3 ln 2 + 1 3
B. ln 80 + 1
C. 1 3 ln 4 5 + ln 2 + 1
D. 1 3 ln 8 5 + 1
Cho hàm số f(x) thỏa mãn f x + f ' x = e - x , ∀ x ∈ ℝ và f(0) = 2. Tất cả các nguyên hàm của f x e 2 x là
A. x - 2 e x + e x + C
B. x + 2 e x + e x + C
C. x - 1 e x + C
D. x + 1 e x + C
Cho hàm số f(x) thỏa mãn f ' ' x = a x + b x 2 , f x = a x 2 2 - b x + c và f - 1 = 2 , f 1 = 4 , f ' 1 = 0 . Tính giá trị của T =abc
A. T = 5 2
B. T = - 5 2
C. T = 1
D. T = - 1
Cho hàm số f(x) xác định trên R\{±1} thỏa mãn f '(x) = 1 x 2 - 1 . Biết f(–3) +f(3) = 0 và f - 1 2 + f 1 2 = 2. Giá trị T = f(–2) + f(0) + f(4) bằng:
A. T = 1 2 ln 9 5
B. T = 2 + 1 2 ln 9 5
C. T = 3 + 1 2 ln 9 5
D. T = 1 + 1 2 ln 9 5
Cho hàm số y = f ( x ) = 2019 l n e x 2019 + e . Tính giá trị biểu thức A = f ’ ( 1 ) + f ’ ( 2 ) + … + f ’ ( 2018 )
A. 2018
B. 1009
C. 2017 2
D. 2019 2
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f'(x), biết f(3)+f(20=f(0)+f(1) và các khẳng định sau:
1) Hàm số y=f(x) có 2 điểm cực trị
2) Hàm số y=f(x) đồng biến trên khoảng - ∞ ; 0
3) M a x 0 ; 3 f x = f 3
4) M a x ℝ f x = f 2
5) M a x - ∞ ; 2 f x = f 0 .
Số khẳng định đúng là
A. 2
B. 3
C. 4
D. 5
Cho hàm số f(x) liên tục trên ℝ + thỏa mãn f ' x ≥ x + 1 x , ∀ x ∈ ℝ + và f(1) = 1. Tính giá trị nhỏ nhất của f(2).
A. 3
B. 2
C. 5 2 + ln 2
D. 4