Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
đới sỹ nam

cho hai số thực  x,y. tìm giá trị nhỏ nhất của biểu thức A=x2+5y2+4xy+3x+8y+26

Khánh Ngọc
6 tháng 12 2020 lúc 12:46

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= ( x2 + 4xy + 4y2 + 3x + 6y + 9/4 ) + ( y2 + 2y + 1 ) + 91/4

= [ ( x + 2y )2 + 2( x + 2y ).3/2 + (3/2)2 ] + ( y + 1 )2 + 91/4

= ( x + 2y + 3/2 )2 + ( y + 1 )2 + 91/4\(\ge\)91/4

Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+2y+\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy minA = 91/4 <=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Khách vãng lai đã xóa
Xyz OLM
6 tháng 12 2020 lúc 12:50

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= (x2 + 4xy + 4y2) + (3x + 6y) + 9/4 + (y2 + 2y + 1) + \(\frac{91}{4}\)

\(\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)

\(\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy Min A = 91/4 <=> x = 1/2 ; y = -1

Khách vãng lai đã xóa

Các câu hỏi tương tự
Moin CiL
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
khangnip
Xem chi tiết
huy ngo
Xem chi tiết
Xem chi tiết
Nguyễn Thế Anh
Xem chi tiết
nguyen thi hoa trinh
Xem chi tiết
Tớ Chưa Bồ
Xem chi tiết