Cho a,b là các số thực thỏa mãn log 2 . log 2 a - log b = 2 . Hỏi a,b thỏa mãn hệ thức nào dưới đây?
A. a = 100b
B. a = 100 - b
C. a = =100 + b
D. a = 100 b
Cho a,b,c là các số thực dương thỏa mãn a log 5 2 = 4 , b log 4 6 = 1 , log , c log 7 3 = 49 Tính giá trị của biểu thức T = a log 2 2 5 + b log 4 2 6 + 3 c log 7 2 3
A. T=126
B. T = 5 + 2 3
C. T=88
D. T = 3 - 2 3
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 ; e 2 y = 1 . Số phần tử của S là:/
A. 0
B. 1
C. 2
D. Vô số
Cho hai số thực dương a, b thỏa mãn 9 a 3 + a b + 1 = 3 b + 2 . Giá trị lớn nhất của biểu thức S = 6a - b là
A. 17 12
B. 82 3
C. 11 3
D. 89 12
Giả sử a,b là các số thực sao cho x 3 + y 3 = a 10 3 x + b 10 2 x đúng với mọi các số thực dương x, y, z thỏa mãn log ( x + y ) = z và log ( x 2 + y 2 ) = z + 1 . Giá trị của a+b bằng
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Cho hai số thực dương x, y thỏa mãn l o g 3 ( x + y + 2 ) = 1 + l o g 3 x - 1 y + y - 1 x . Giá trị nhỏ nhất của biểu thức x 2 + y 2 x y = a b với a , b ∈ N và (a,b)=1. Hỏi a+b bằng bao nhiêu
A. 2
B. 9
C. 12
D. 13
Giả sử a,b là các số thực sao cho x 3 + y 3 = a . 10 3 x + b . 10 2 x đúng với mọi số thực dương x,y,z thỏa mãn log(x+y)=z và log x 2 + y 2 = z + 1 Giá trị của a+b bằng:
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Cho a, b là hai số thực dương và a ≠ 1 thỏa mãn log a b = 2 . Tính giá trị biểu thức P = log a 2 b b 2 a
A. P = 2 + 3 2 2
B. P = 2 2 2 + 1
C. P = 2 - 1 2 + 1
D. P = - 6 + 5 2 2
Cho a, b là hai số thực dương và a ≠ 1 thỏa mãn log a b = 2 . Tính giá trị biểu thức P = log a 2 b b 2 a .
A. P = 2 + 3 2 2 .
B. P = 2 2 2 + 1 .
C. P = 2 - 1 2 + 1 .
D. P = − 6 + 5 2 2 .
Bài 1: Cho B = \(x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...-2014x^2+2014x-1\)
Tính giá trị của biểu thức B với x=2013.
Bài 2: Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức : M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)