Cho hai đường tròn (O;8cm) và (O'6cm) tiếp xúc ngoài với nhau tại A.Tiếp tuyến chung ngoài BC với B∈(O) và C∈(O') có độ dài bằng
A.4\(\sqrt{3}\)cm B.\(6\sqrt{3}\)cm C.8\(\sqrt{3}\)cm D.12\(\sqrt{3}\)cm
Câu 8. [VDT] Cho hai đường tròn (O; 8cm) và (O/; 5cm) tiếp xúc ngoài tại M. Gọi AB là tiếp tuyến chung của hai đường tròn (A (O); B (O/)). Tính độ dài AB (kết quả làm tròn đến chữ số thập phân thứ hai).
A. 8.75 cm. B. 10,85 cm. C. 12,65 cm. D. 14,08 cm.
Cho hai đường tròn ( O ) và ( O' ) tiếp xúc ngoài ở A . Tiếp tuyến chung ngoài của 2 đường tròn , tiếp xúc với ( O ) ở M , tiếp xúc với đường tròn ( O' ) ở N . Qua A kẻ đường thẳng vuông góc với OO' cắt MN ở I .
a) CM : tam giác AMN vuông
b) Tam giác IOO' là tam giác gì ? Vì sao
c) CMR : đường thẳng MN tiếp xúc với đường tròn đường kính OO'
d) Cho biết OA = 8cm , OA' = 4,5 cm . TÍnh độ dài MN .
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A.Kẻ tiếp tuyến chung ngoài BC,B thuộc (O),C thuộc (O') .tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC tại I
a) Chứng minh BAC=90 độ
b)tính số đo góc OIO'
c)tính độ dài cạnh BC biết OI=9 cm;O' I=4 cm
Cho hai đường tròn (O; R) và (O'; r) ở ngoài nhau. Gọi MN là tiếp tuyến chung ngoài, EF là tiếp tuyến chung trong (M và E thuộc (O), N và F thuộc (O')). Tính bán kính của đường tròn (O) và (O') trong các trường họp sau:
a, OO' = 10 cm, MN = 8cm và EF = 6 cm
b, OO' = 13 cm, MN = 12 cm và EF = 5 cm
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O),C ∈ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I
c) Tính độ dài BC, biết OA = 9cm, O'A = 4 cm
Cho hai đường tròn (O; 6 cm) và (O'; 2 cm) nằm ngoài nhau. Gọi AB là tiếp tuyến chung ngoài, CD là tiếp tuyến chung trong CD của hai đường tròn (A và C thuộc (O); B và D thuộc (O’)). Biết AB = 2CD, tính độ dài đoạn nối tâm OO'
Câu 11. [VDC] Cho hai đường tròn (O; 10cm) và (O/; 6cm) tiếp xúc ngoài tại M. Gọi AB là tiếp tuyến chung của hai đường tròn (A (O); B (O/)). Đường thẳng AB cắt đường thẳng OO/ tại C. Độ dài O/C bằng
A. 16cm. B. 24 cm. C. 28 cm. D. 34 cm.
Câu 12. [VDC] Cho tam giác ABC có đường tròn nội tiếp tiếp xúc với AB, BC, CA theo thứ tự tại M, N, P; Biết BC = a và chu vi tam giác ABC bằng p. Tính AM theo a và p.
A. AM = p + a. B. AM = p -2a.
C. AM = 2p – a. D. AM = – a.
Cho 2 đường tròn (O1; R1); (O2; R2) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài tại BC (B thuộc O1, C thuộc O2). Tiếp tuyến chung tại A cắt BC ở I.
a) CM tam giác ABC, tam giác IO1O2 vuông và BC = 2\(\sqrt{R1R2}\)
b) Gọi R là bán kính đường tròn O tiếp xúc với BC và tiếp xúc ngoài 2 đường tròn O1, O2. CM \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}\)