Cho hai đường thẳng d 1 , d 2 song song với nhau. Trên d 1 có 10 điểm phân biệt, trên d 2 có n điểm phân biệt n ≥ 2 . Biết rằng có tất cả 2800 tam giác có các đỉnh là các điểm nói trên. Vậy n có giá trị là
A. 20
B. 21
C. 30
D. 32
Cho hai đường thẳng d 1 và d 2 song song với nhau. Trên d 1 có 10 điểm phân biệt, trên d 2 có n điểm phân biệt (n≥2). Biết rằng có 1725 tam giác có các đỉnh là ba trong số các điểm thuộc d 1 và d 2 nói trên. Khi đó n bằng bao nhiêu?
A. 12
B. 13
C. 14
D. 15
Cho hai đường thẳng d và d’ song song với nhau. Trên d lấy 5 điểm phân biệt, trên d’ lấy 7 điểm phân biệt. Hỏi có bao nhiêu tam giác mà các đỉnh của nó được lấy từ các điểm trên hai đường thẳng d và d’.
A. 175
B. 220
C. 1320
D. 105
Cho hai đường thẳng song song d 1 và d 2 . Trên đường thẳng d 1 có 10 điểm phân biệt, trên đường thẳng d 2 có 20 điểm phân biệt n ≥ 2 . Hỏi có tất cả bao nhiêu tam giác có đỉnh là các điểm đã cho.
A. 1000
B. 2000
C. 2400
D. 2800
Cho hai đường thẳng song song d 1 , d 2 . Trên d 1 có 6 điểm phân biệt được tô màu đỏ, trên d 2 có 4 điểm phân biệt được tô màu xanh. Xét tất cả các tam giác được tạo thành khi nối các điểm đó với nhau. Chọn ngẫu nhiên một tam giác, khi đó xác suất để thu được tam giác có hai đỉnh màu đỏ là:
A. 5 32 .
B. 5 8 .
C. 5 9 .
D. 5 7 .
Cho hai đường thẳng song song d 1 , d 2 . Trên d 1 lấy 6 điểm phân biệt, trên lấy 4 điểm phân biệt. Xét tất cả các tam giác được tạo thành khi nối các điểm đó với nhau. Chọn ngẫu nhiên một tam giác. Xác suất để thu được tam giác có hai đỉnh thuộc d 1 là:
A. 2 9
B. 5 9
C. 3 8
D. 5 8
Cho hàm số y = 2 x + 1 x − 1 có đồ thị là (H) và đường thẳng d có hệ số góc m và đi qua điểm A − 2 ; 2 . Giả sử d cắt (H) tại hai điểm phân biệt M, N. Qua M kẻ các đường thẳng lần lượt song song với các trục tọa độ, qua N kẻ các đường thẳng lần lượt song song với các trục tọa độ. Tìm số các giá trị thực của tham số m sao cho bốn đường thẳng đó tạo thành một hình vuông.
A. 0
B. 1
C. 2
D. 3
Cho tam giác ABC. Xét m đường thẳng phân biệt song song với cạnh AB, n đường thẳng phân biệt song song với cạnh AC và 2 đường thẳng phân biệt song song với cạnh BC, với m , n ∈ ℕ , m ≥ 2 , n ≥ 2 . Biết rằng có tất cả 43 hình bình hành được thành lập từ m + n + 2 đường thẳng nói trên. Có bao nhiêu bộ số thỏa mãn đề bài?
A. 10
B. 4
C. 8
D. 6
Cho hai đường thẳng a, b song song với nhau. Trên a ta chọn 10 điểm phân biệt, trên b ta chọn 11 điểm phân biệt. Có bao nhiêu hình thang được tạo thành từ 21 điểm đã cho ở trên?
A. 406
B. 2475
C. 2512
D. 304