Ta có:
\(G=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+.....+\dfrac{1}{100^2}\)
\(G=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)\)
\(G< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\right)\)
\(G=\dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(G=\dfrac{1}{4}\left(2-\dfrac{1}{100}\right)\)
\(\Rightarrow G< \dfrac{1}{2}\left(đpcm\right)\)
\(G=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)
\(=\dfrac{1}{4}\left(2-\dfrac{1}{50}\right)=\left(\dfrac{1}{2}-\dfrac{1}{200}\right)< \dfrac{1}{2}\left(đpcm\right)\)
\(=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{5^2}\right)< \dfrac{1}{4}\left(1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\\ =\dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{4}\left(2-\dfrac{1}{100}\right)< \dfrac{1}{2}\left(\text{đ}pcm\right)\)