a) Xét ΔOAB có OA=OB=AB(=R)
nên ΔOAB đều(Dấu hiệu nhận biết tam giác đều)
\(\Leftrightarrow\widehat{AOB}=60^0\)
hay \(sđ\stackrel\frown{AB}=60^0\)
a) Xét ΔOAB có OA=OB=AB(=R)
nên ΔOAB đều(Dấu hiệu nhận biết tam giác đều)
\(\Leftrightarrow\widehat{AOB}=60^0\)
hay \(sđ\stackrel\frown{AB}=60^0\)
Cho (0 ; R) đường kính AB. Vẽ dây cung CD =R, AC và BD kéo dài cắt nhau tại e A) tính số đo cung CD nhỏ và số đo góc AEB B) GỌI H LÀ GIAO ĐIỂM CỦA AD VÀ BC, CM TỨ GIÁC ACHD NỘI TIẾP C) CHỨNG MINH A H + AD + BC + BC = 4 R
cho đường tròn O bán kính R đường kính BC,Vẽ dây AD=R,dây AC và dây BD kéo dài cắt nhau tại E
a) tính số đo cung nhỏ CD
b)gọi H là giao điểm của AC và CD.Chứng minh tứ giác ADEH nội tiếp
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
) Cho đường tròn tâm O bán kính OA và dây cung MN vuông góc OA (A nằm trên cung nhỏ MN). Vẽ dây cung AB và dây cung AC sao cho AB cắt MN tại I, AC cắt MN tại K theo thứ tự M, I, K, N. 1/ Chứng minh: Tứ giác BIKC nội tiếp. 2/ Gọi R là giao của AB và MC, S là giao của AC và BN. Chứng minh: MN // RS và AB.IR = AC.KS. 3/ Chứng minh: MA là tiếp tuyến của đường tròn ngoại tiếp MBI và đường tròn ngoại tiếp MBI tiếp xúc với đường tròn ngoại tiếp MCK.
Trong đường tròn tâm O, bán kính R, cho dây cung AB có độ dài là \(R\sqrt{3}\).M là điểm di động trên cung lớn AB. I là hình chiếu của tâm O lên AB. Gọi MN là đường kính của đường tròn và H là điểm đối xứng của N qua I.
a) Chứng minh: NBHA là hình bình hành
b) Chứng minh H là trực tâm tam giác MAB
c) Chứng minh MH có độ dài không đổi khi M di động
d) AH cắt MB tại F và BH cắt MA tại E. Chứng minh: AEFB nội tiếp
chứng minh EF song song với tiếp tuyến đường tròn tại M
Cho đường tròn tâm O đường kính AB và CD vuông góc với nhau . Điểm M nằm trên cung nhỏ AC sao cho
MC < MA .
a) Chứng minh CMB = DMB
b) Từ C kẻ đường vuông góc với MB cắt MD tại E và cắt AB tại F . Chứng minh tam giác MCF vuông cân .Tính số đo góc DEC
c) Chứng minh tứ giác EFDB nội tiếp được một đường tròn .Xác định tâm của đường tròn ngoại tiếp tam giác DEC
Cho đường tròn tâm O bán kính R và dây AB. Vẽ đường kính CD vuông góc với AB tại K. M là điểm thuộc cung nhỏ BC. Gọi F là giao điểm của DM và AB.
a) Chứng minh rằng tứ giác CKFM là tứ giác nội tiếp
b) Chứng minh rằng: \(AD^2\) = DF. DM
Từ một điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC có B và C là hai tiếp điểm sao cho góc BOC = 1200 và cát tuyến AMN của đường tròn đó . Gọi I là trung điểm của dây MN.
a) Tính số đo cung nhỏ BC ?
b) Chứng minh tứ giác ABOC nội tiếp ?
c) Tính diện tích hình quạt tròn giới hạn bởi cung nhỏ AB theo R ?
d) Tính diện tích hình tròn ngoại tiếp tứ giác ABOC theo bán kính R khi AB=R ?
e) Chứng minh góc IOC = góc IAC ?
Cho đường tròn tâm O đường kính AB=2R. Vẽ dây cung CD vuông góc với AB tại I(I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC(E khác B và C), AE cắt CD tại F
a) Chứng minh tứ giác BEFL nội tiếp trong một đường tròn
b) Tính độ dài cạnh AC theo R và góc ACD khi góc BAC=60độ
c) Chứng minh khi điểm E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp tam giác CEF luôn thuộc một đường thẳng cố định