tick rồi mk giải chi tiết cho
tick rồi mk giải chi tiết cho
Cho hai đường tròn (O;R) và (O;R') tiếp xúc ngoài tại A. vẽ tiếp tuyến chung ngoài BC . Gọi D là giao điểm của đường thẳng AC và đường tròn (O) . vẽ tiếp tuyến DE của (O') chứng minh BD=DE
Cho hai đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài của hai đường tròn, B và C là các tiếp điểm. Độ dài đoạn thẳng BC tính theo R và r bằng??
Cho hai đường tròn (O;R) và (O;r) tiếp xúc ngoài tại A. Một đường thẳng (d) tiếp xúc với cả hai đường tròn trên tại B và C với B ∈ (O), C ∈ (O’).
b) Gọi M là trung điểm của BC. Chứng minh MA là tiếp tuyến chung của hai đường tròn (O) và (O‘).
Cho hai đường tròn (O;R) và (I;r) tiếp xúc ngoài tại M (R>r).Kẻ tiếp tuyến chung ngoài BC (B∈(O);C∈(I) ).Tiếp tuyến chung trong tại M cắt BC tại K.Kẻ đường kính BE của đường tròn (O).
a)Chứng minh BK=KC và góc BME=90⁰
b)OK cắt BM tại N;IK cắt CM tại P.Chứng minh NP//BC
c)Chứng minhBC= 2\(\sqrt[]{IM.IO-IK.IP}\)
cho 2 đường tròn (o r) và (o' r') tiếp xúc ngoài tại A.Một tiếp tuyến chung tại BC của (o),(o') . a) chứng minh đường tròn đường kính BC tiếp xúc với đường thẳng OO' và đường tròn OO' tiếp xúc với đường thẳng BC.b) Tính BC theo R và R'
Cho hai đường tròn (O,R)và (O`,r) tiếp xúc ngoài tại A kẻ tiếp tuyến chung ngoài DE của (O)và (O`), D€(O),E€(O')tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài DE ở I
a,tính số đo góc OIO'.
b, chứng minh OO' là tiếp tuyến của đường tròn đường kính DE
c, tính độ dài DE theo R và r
cho hai đường tròn (O;R) và (O;r) tiếp xúc ngoài tại A. Một đường thẳng (d) tiếp xúc với cả hai đường tròn trên tại B và C với B ∈ (O), C ∈ (O’).
a) Chứng minh tam giác ABC vuông
b) Gọi M là trung điểm của BC. Chứng minh MA là tiếp tuyến chung của hai đường tròn (O) và (O‘).
Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài tại A (R > R’). Vẽ các đường kính AOB, AO’C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC. Chứng minh rằng KI là tiếp tuyến của đường tròn (O’)
Cho hai đường tròn (O; 16cm) và (O’; 9cm) tiếp xúc ngoài tại A. Gọi BC là tiếp tuyến chung ngoài của hai đường tròn (B ∈ (O), C ∈ (O')). Kẻ tiếp tuyến chung tại A cắt BC ở M. Gọi I là trung điểm của OO’. Chứng minh rằng BC là tiếp tuyến của đường tròn tâm I, bán kính IM.