Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho đường tròn (O; R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC.

3) Đường thẳng qua M và vuông góc với đường thẳng ON cắt (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để  AMPN là hình bình hành.

Cao Minh Tâm
23 tháng 9 2019 lúc 12:16

Ta có AN  NO, MP NO, M AN => AN // MP

Do đó AMPN là hình bình hành ó AN = MP = 2x

Tam giác ∆ANO đồng dạng với ∆NEM =>  A N N E = N O E M = > N E = 2 x 2 R  

TH 1.NE = NO – OE =>  2 x 2 R = R − R 2 − x 2 ⇔ 2 x 2 = R 2 − R R 2 − x 2  

Đặt  R 2 − x 2 = t , t ≥ 0 ⇒ x 2 = R 2 − t 2 .

PTTT 2 ( R 2 − t 2 ) = R 2 − R t ⇔ 2 t 2 − R t − R 2 = 0 ⇔ 2 t = − R t = R  

Do  t ≥ 0 ⇒ t = R ⇔ R 2 − x 2 = R ⇔ x = 0 ⇒ A ≡ B  (loại)

TH 2 NE = NO + OE =>  2 x 2 R = R + R 2 − x 2 ⇔ 2 x 2 = R 2 + R R 2 − x 2  

Đặt R 2 − x 2 = t , t ≥ 0 ⇒ x 2 = R 2 − t 2 .

PTTT 2 ( R 2 − t 2 ) = R 2 + R t ⇔ 2 t 2 + R t − R 2 = 0 ⇔ 2 t = R t = − R  

Do t ≥ 0 ⇒ 2 t = R ⇔ 2 R 2 − x 2 = R ⇔ x = R 3 2 = > A O = 2 R  (loại)

Vậy A thuộc BC, cách O một đoạn bằng 2R thì AMPN là hbh


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Bảo Nam
Xem chi tiết
Đặng Văn Kiên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Gia Bảo
Xem chi tiết
Nhi Hoàng
Xem chi tiết
Linh
Xem chi tiết