Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Gia Bảo

Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. 1) Chứng minh bốn điểm A, M, 0, H cũng thuộc một đường tròn. 2) MN cắt OA tại điểm I. Chứng minh rằng AI. AO= AM²

An Thy
29 tháng 5 2021 lúc 20:28

1) Trong (O) có BC là dây cung không đi qua O,có H là trung điểm BC

\(\Rightarrow OH\bot BC\Rightarrow\angle OHA=90\) mà \(\angle OMA=90\Rightarrow OMAH\) nội tiếp

2) Ta có: \(\Delta AMO\) vuông tại M có \(AO\bot MI\Rightarrow AM^2=AI.AO\)

Hồng Phúc
29 tháng 5 2021 lúc 20:31

1.

Theo giả thiết: \(H\) là trung điểm BC

\(\Rightarrow OH\perp BC\Leftrightarrow\widehat{OHA}=90^o\)

Lại có: \(AM\perp OM\Leftrightarrow\widehat{OMA}=90^o\)

\(\Rightarrow\widehat{OHA}+\widehat{OMA}=180^o\)

\(\Rightarrow AMOH\) nội tiếp 

Hay \(A,M,O,H\) cùng thuộc đường tròn đường kính OA