Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hacker

Cho điểm A nằm ngoài \(\left(O,R\right)\), vẽ hai tiếp tuyến AB và AC ( B và C là tiếp điểm ). Gọi H là giao điểm của AO và BC. Kẻ đường kính BD của \(\left(O\right)\), AO song song CD. AD cắt \(\left(O\right)\) tại E. Chứng minh: \(\hat{AHE}=\hat{OHD}\)\(\cos\frac{\hat{EHD}}{2}=\frac{HE}{HB}\).

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA⊥BC tại H

Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE⊥AD tại E

Xét ΔABD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\) (3)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\)

Từ (3),(4) suy ra \(AE\cdot AD=AH\cdot AO\)

=>\(\frac{AE}{AO}=\frac{AH}{AD}\)

Xét ΔAEH và ΔAOD có

\(\frac{AE}{AO}=\frac{AH}{AD}\)

\(\hat{EAH}\) chung

Do đó: ΔAEH~ΔAOD

=>\(\hat{AHE}=\hat{ADO}\)

\(\hat{AHE}+\hat{OHE}=180^0\) (hai góc kề bù)

nên \(\hat{OHE}+\hat{ODE}=180^0\)

=>OHED là tứ giác nội tiếp

=>\(\hat{OHD}=\hat{OED}\)

\(\hat{OED}=\hat{ODE}\) (ΔOED cân tại O)

\(\hat{ODE}=\hat{AHE}\)

nên \(\hat{AHE}=\hat{OHD}\)


Các câu hỏi tương tự
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Hồng Hương
Xem chi tiết
DUTREND123456789
Xem chi tiết
Lan Anh
Xem chi tiết
Nguyễn tiến hà
Xem chi tiết
Trần Nhã Trúc
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Ánh Trần
Xem chi tiết
Km123 San Mine
Xem chi tiết
Trương Thủy Tiên
Xem chi tiết