Xét ΔBMN và ΔCMA có
góc BMN=góc AMC
góc MNB=góc MAC
=>ΔBMN đồng dạng với ΔCMA
Xét ΔBMN và ΔCMA có
góc BMN=góc AMC
góc MNB=góc MAC
=>ΔBMN đồng dạng với ΔCMA
Cho tam giác ABC vuông tại A (AB < AC) kẻ đường cao AH và trung tuyến
AM (H, M thuộc BC). Qua A kẻ đường thẳng vuông góc với AM và cắt đường thẳng
BC tại D.
a) Chứng minh AB là phân giác của góc DAH;
b) Chứng minh BH.CD = CH.BD.
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE
a ) Chứng minh : BA DC
b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ;
c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ;
d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD .
Cho tam giác ABC vuông tại A (AB < AC) kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng: a) AB là tia phân giác của góc DAH. b) BH×CD=BD×CH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD .
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD .
nhanh nhé mik cần trước 8:45 hứa tick đúng
Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB, cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. a) Chứng minh: BE BA DE DC' b) Qua E kẻ đường thẳng song song với AC, đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I, K. Chứng minh: EI = EK; c) Gọi N là giao điểm của EH và AC; Gọi Q là giao điểm của DN và BC; Gọi P là giao điểm của BN và AD. Chúng minh: NA = NC và PQ // BD; d) Gọi G là giao điểm của đường thẳng AQ và CD. Qua Q kẻ đường thẳng song song với CE, cắt đường thẳng AC tại T. Chứng minh PT vuông góc với AD.
giúp mik với ak
Cho tam giác ABC vuông tại A(AB,AC) kẻ AH vuông góc BC tại H. Qua B kẻ đường thẳng vuông góc với AB, cắt đường thẳng AH tại D. Gọi tia AB và CD cắt nhau tại E.
a) Chứng minh BE/BA=DE/DC
b)Qua E kẻ đường thẳng song song với AC, đường thẳng này lần lượt cắt các đường thẳng AD,BC tại I,K. Chứng minh EI=EK.
c)Gọi N là giao điểm của EH và AC. Gọi Q là giao điểm của DN và BC. Gọi P là giao điểm của BN và AD. NA=NC và PQ//BD.
d)Gọi G là giao điểm của đường thẳng AQ và CD. Qua Q kẻ đường thẳng song song với CE, cắt đường thẳng AC tại T. Chứng minh Pt vuông góc AD