1, Trong mặt phẳng tọa độ Oxy , cho M(1;-1) . N (3;2) , P(0;-5) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC Tìm tọa độ điểm A
2, Trong mặt phẳng tọa độ Oxy , cho A(1;3) , B(-1;-2) , C(1;5) . Tọa độ D trên trục Ox sao cho ABCD là hình thang có 2 đấy AB và CD là ?
Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C(-1;-2) Điểm M thỏa mãn \(\overrightarrow{2MB}+\overrightarrow{3MC}=\overrightarrow{0}\) Tìm tọa độ điểm M
Trong mặt phẳng tọa độ Oxy , cho vecto \(\overrightarrow{u}=\left(2;-4\right),\overrightarrow{a}=\left(1;-2\right),\overrightarrow{b}=\left(1;-3\right)\)Biết \(\overrightarrow{u}=m\overrightarrow{a}+n\overrightarrow{b}\) tính m - n bẳng ?
Cho \(A\left(1;4\right);B\left(-1;5\right);C\left(-5;1\right)\)
a, Tìm tập hợp điểm M thỏa mãn \(\left|\overrightarrow{MA}-4\overrightarrow{MB}-2\overrightarrow{MC}\right|=2\)
b, Tìm tọa độ tâm đường tròn ngoại tiếp \(\Delta ABC\)
c, Tìm tọa độ tâm đường tròn nôi tiếp \(\Delta ABC\)
@Nguyễn Việt Lâm
@Akai Haruma
1, Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C (-1 ; 2) . Điểm M thỏa mãn \(2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tọa độ điểm M là ?
2. Cho \(\overrightarrow{a}=\left(1;2\right)\) và \(\overrightarrow{b}=\left(3;4\right)\) Vecto \(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}\) có tọa độ là ?
3. Cho A(3;-2) , B (-5;4 ) và C \(\left(\frac{1}{3};0\right)\). Ta có \(\overrightarrow{AB}=x\overrightarrow{AC}\) tìm giá trị của x
4, Trên trục x'Ox cho 2 điểm A,B lân lượt có tọa dộ là a, b. M là điểm thỏa mãn \(\overrightarrow{MA}=k\overrightarrow{MB},k\ne1\). Khi đó tọa độ điểm M là
5, Trong mặt phẳng Oxy , cho \(\overrightarrow{a}=\left(2,1\right);\overrightarrow{b}=\left(3,4\right);\overrightarrow{c}=\left(7,2\right)\)Tìm m,n để A,B,C thẳng hàng
*Minh mới học phần này cũng chưa hiểu lắm nên các bạn giải kĩ giúp mình. Cảm ơn nhiều <3
Trong mặt phẳng Oxy cho tam giác ABC có \(A\left(3;2\right);B\left(-11;0\right);C\left(5;4\right)\), tọa độ trọng tâm tam giác ABC là....
1. trên trục x'Ox cho 2 điểm A,B có tọa độ lần lượt là -2 và 5. tìm tọa độ của M sao cho \(2\overrightarrow{MA}+5\overrightarrow{MB}=\overrightarrow{0}\)
2. tìm tọa độ điểm M biết \(2\overrightarrow{OM}+7\overrightarrow{MO}=-\overrightarrow{i}+3\overrightarrow{j}\)
3. cho \(\overrightarrow{a}=\left(2;0\right),\overrightarrow{b}=\left(-1;\frac{1}{2}\right),\overrightarrow{c}=\left(4;-6\right)\). tìm 2 số m,n sao cho \(m\overrightarrow{a}+\overrightarrow{b}-n\overrightarrow{c}=\overrightarrow{0}\) , biểu diễn véc tơ \(\overrightarrow{c}\) theo \(\overrightarrow{a},\overrightarrow{b}\)
Trong mặt phẳng Oxy cho điểm \(A\left(2;1\right);B\left(6;5\right)\), tọa độ điểm M thuộc đoạn AB sao cho AM = 3 BM là...
bài 1
cho \(\Delta ABC\) nội tiếp đường tròn tâm O, H là trực tâm, D đối xứng với A qua O
a. chứng minh tứ giác HCDB là hình bình hành
b chứng minh: \(\overrightarrow{HA}+\overrightarrow{HD}=2\overrightarrow{HO};\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO}\);\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)
c.Gọi G là trọng tâm của \(\Delta ABC\). Chứng minh \(\overrightarrow{OH}=3\overrightarrow{OG}\). Từ đó kết luận gì về 3 điểm G, O, H
bài 2
\(\Delta ABC\) là tam giác gì nếu nó thỏa mãn một trong các điều kiện sau
a.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
b. \(\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\perp\left(\overrightarrow{AB}+\overrightarrow{CA}\right)\)
2)trong mặt phẳng Oxy,cho tam giác ABC với A(1,-2),B(3,2),C(O,4).Tìm tọa độ điểm D là đỉnh thứ tư của hình bình hànhABCD
3)Cho tam giác ABC .Gọi D,M lần lượt là trung điểm của BC,AB.Gọi G LÀ TRỌNG TÂM CỦA TAM GIÁC ABC.CHỨNG MINH:VECTO AG=2/3 VECTO AM+1/3VETO AC
4)TRONG MẶT PHẲNG OXY,CHO 3 ĐIỂM A(1,-2),B(3,4),C(3,3).TÌM TỌA ĐỘ ĐIỂM F TRÊN TRỤC TUNG SAO CHO\(\left|\overrightarrow{FA}+\overrightarrow{FB}+2\overrightarrow{FC}\right|\)đạt giá trị nhỏ nhất
trong mặt phẳng tọa độ Oxy cho A(1;3); B(2;7); C(-1;3). tìm tập hợp điiểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MC}\right|\)