Cho tam giác DEF có DI là phân giác của góc D; I thuộc EF, ED=10 cm , DF=6 cm , FI= 4,8 cm.
a) Tính EI
b) Qua I kẻ đường thẳng song song với DF cắt DE tại M. Tính ME;MD;IM
c) Chứng minh: DE/DF = ME/MD
d) Gọi N là trung điểm của DF; DI cắt MN tại K; FM cắt IN tại H.Chứng minh: KH//MI
tam giác DEF cân tại D có DE=DF=5cm, EF=6cm. Tia phân giác của góc E cắt DF tại M, phân giác của góc F cắt DE tại N. Tính DM. Tính tỉ số diện tích của ∆DMN và ∆DEF
Cho tam giác DEK vuông tại D, DE=9cm, EF=15cm.EK là tia phân giác của góc DEK
a) Tính DF, KF
b) Qua F kẻ đường thẳng vuông góc với EK, cắt DE tại N. Chứng minh NM.NF=ND.NE
c) Chứng minh EK.EM+FK.FD=EF^2
Cho tam giác DEF vuông tại D, đường cao DK. Biết DE = 16cm, EF = 20cm
a) Chứng minh tam giác DKF đồng dạng với tam giác EDF
b) Tính độ dài các đoạn thẳng DF; DK
c) Kẻ đường phân giác FI (I thuộc DE) cắt DK tại M. \(\dfrac{MK}{MD}\) = \(\dfrac{DI}{EI}\)
cho tam giác DEF vuông tại D có DE < DF, đường phân giác EM ( E thuộc DF ) , đường cao DH ( H thuộc EF) . EM cắt DH tại K
a) Chứng minh EHK đồng dạng EDM và góc EKH= góc EMD
b) Chứng minh EK/EM = DK/MF
c) Chứng minh HK.MF=DK2
Cho tam giác DEF có trung tuyến DM . Đường phân giác góc DME cắt DE tại G , đường phân giác góc DMF cắt DF tại H .
a)Chứng minh rằng: GE/GD = HF/HD
b) Xác định vị trí của GH và EF ?
1, cho tam giác ABC đều , các đường phân giác góc B và góc C cắt nhau tại O. trên cạnh BC lấy điểm D không trùng với trung điểm của nó. vẽ DE vuông góc với AB cắt OB tại M, vẽ DF vuông góc với AC cắt OC tại N chứng minh rằng
a/\(\frac{DM}{DN}=\frac{DE}{DF}\)
b/ OD chia đôi EF