a: Xét ΔMAB có ME là phân giác
nên \(\dfrac{AE}{EB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)
Xét ΔAMC có MD là phân giác
nên \(\dfrac{AD}{DC}=\dfrac{AM}{MC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
Xét ΔABC có \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
nên ED//BC
b: Xét ΔABM có EI//BM
nên \(\dfrac{EI}{BM}=\dfrac{AI}{AM}\left(3\right)\)
Xét ΔAMC có ID//MC
nên \(\dfrac{ID}{MC}=\dfrac{AI}{AM}\left(4\right)\)
Từ (3) và (4) suy ra \(\dfrac{EI}{BM}=\dfrac{ID}{MC}\)
mà BM=MC
nên EI=ID
Ta có: ID//MC
=>\(\widehat{IDM}=\widehat{MDC}\)(hai góc so le trong)
mà \(\widehat{MDC}=\widehat{IMD}\)(MD là phân giác của góc IMC)
nên \(\widehat{IDM}=\widehat{IMD}\)
=>IM=ID