a: góc BFC=góc BEC=90độ
=>BFEC nội tiếp
b: Xét ΔBEI và ΔBME có
góc BEI=góc BME
góc EBI chung
=>ΔBEI đồng dạng vói ΔBME
=>BE^2=BI*BM=BS*BA
a: góc BFC=góc BEC=90độ
=>BFEC nội tiếp
b: Xét ΔBEI và ΔBME có
góc BEI=góc BME
góc EBI chung
=>ΔBEI đồng dạng vói ΔBME
=>BE^2=BI*BM=BS*BA
cho ΔABC nhọn, AB < AC nội tiếp (O). Kẻ 3 đường cao AB, BE, CF cắt nhau tại H, kéo dài AD cắt (O) tại K.
a) Chứng minh: Tứ giác BFEC nội tiếp và DCH = DCK
b) Tia KE cắt (O) tại M, BM cắt EF tại I, kẻ ES ⊥ AB tại S.
Chứng minh: BE2= BI. BM và tứ giác AMIS nội tiếp\(\)
Cho tam giác ABC nhọn nội tiếp đường tròn (O), 2 đường cao BE và CF của tam giác ABC cắt nhau tại H. Chứng minh: a. Tứ giác BCEF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BCEF. b. CM: AE.AC = AF.AB c. Tia AO cắt đường tròn (O) tại P, cắt EF tại Q. CM AP vuông góc với EF
Cho tam giác ABC nhọn nội tiếp đường tròn (O). các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a. Cm: tứ giác BCEF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.
b. Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T).
Cm: MK.MT=MD.MI
c. Cm: tứ giác IDKT là tứ giác nội tiếp
d. Đường thẳng vuông góc với IH tại I cắt các đường thẳng AB, AC và AD lần lượt tại N, S và G. Cm G là trung điểm của đoạn NS
cho tg ABC nhọn (AB<AC) nột tiếp (o), hai đường cao CF và BE cắt nhau tại H.tia AH cắt BC tại D
a/ CM: các tứ giác BCEF,AEHF nội tiếp
b/vẽ đường kính AK của(O). Gọi M là trung điểm của BC.CM: H và K đối xứng nhau qua M
c/vẽ đường kính BC. I là điểm chính giữa của cung nhỏ EF, tia CI cắt AB tại P,tia BI cắt AC tại Q.CM: AK vuông góc với PQ
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O đường kính r các đường cao AD BE CF cắt nhau tại H
a)Chứng minh tứ giác BDHF , BCEF nội tiếp
b) cm AE.AC=AB.AF
c) cm FC là tia phân giác góc DFE
Em sắp thi cấp 3 rồi mong mọi người giúp em bài này !
Cho tam giác ABC nhọn nội tiếp đường tròn (O). các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a. Cm: tứ giác BCEF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.
b. Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T).
Cm: MK.MT=ME.MF
c. Cm: tứ giác IDKT là tứ giác nội tiếp
d. Đường thẳng vuông góc với IH tại I cắt các đường thẳng AB, AC và AD lần lượt tại N, S và J. Cm J là trung điểm của đoạn NS
cho ∆ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF, cắt nhau tại H
a) CM: tứ giác BCEF nội tiếp đường tròn và xác định tâm I của đường tròn ngoại tiếp tứ giác
b/ Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O ) tại K và T
( K nằm giữa M và T ) .Chứng minh : MD. MI = MK. MT
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), các đường cao AD, BE và CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF và BCEF nội tiếp.
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC = ME.MF.
c) AM cắt đường tròn (O) tại N. Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K. Chứng minh AN vuông góc HN và HI = HK.
Cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn(O) các đường cao AD,BE,CF cắt tại H. a)CM tứ giác BFEC nội tiếp và góc EDH=góc FDH b) Gọi I là trung điểm của DE và CF cắt đường tròn tại N ,ND cắt (O) tại K.CM: A,I,K thẳng hàng