Cho ΔABC có ba góc nhọn (AB<AC) nội tiếp (O),đường cao AH.Trên đoạn thẳng AH lấy điểm D bất kì (D khác A và H).Gọi M và N lần lượt là hình chiếu vuông góc của D trên AB và AC
a)Chứng minh MN song song với tiếp tuyến tại A của (O)
b)Đường thẳng AH cắt MN tại I.Chứng minh khi D di động trên AH thì tâm đường tròn ngoại tiếp ΔBMI luôn thuộc một đường cố định
Cho ΔABC có ba góc nhọn (AB<AC) nội tiếp (O),đường cao AH.Trên đoạn thẳng AH lấy điểm D bất kì (D khác A và H).Gọi M và N lần lượt là hình chiếu vuông góc của D trên AB và AC
a)Chứng minh tứ giác BMDH nội tiếp
b)Chứng minh MN song song với tiếp tuyến tại A của (O)
Cho ΔABC có ba góc nhọn (AB<AC) nội tiếp (O),đường cao AH.Trên đoạn AH lấy điểm D bất kỳ.Gọi M và N lần lượt là hình chiếu của D trên AB và AC.Chứng minh MN song song với tiếp tuyến tại A của (O)
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O), đường cao AD. gọi E và F lần lượt là hình chiếu vuông góc của A lên tiếp tuyến tại B và C của đường tròn
1. Chứng minh tứ giác AEBD là tứ giác nội tiếp
2. Chứng minh ABC = ADF
3. Chứng minh AD2 = AE.AF
4. Gọi M, N lần lượt là trung điểm của AE và AF, chứng minh rằng nếu AD = AM + AN thì 3 điểm A, O, D thẳng hàng
cho tam giác ABC có ba góc nhọn và AB < AC . đường trong tâm O đường kính BC cắt các cạnh AB, AC theo thứ tự tại E và D .
a) chứng minh AD.AC = AE.AB
b) gọi H là giao điểm của BD và CE gọi K là giao điểm của AH và BC . Chứng minh AH vuông góc với BC
c) từ A kẻ các tiếp tuyến AM, AN đến đường tròn (O) với M,N là các tiếp điểm . chứng minh \(\widehat{ANM}=\widehat{AKN}\)
d) chứng minh ba điểm M,H,N thẳng hàng.
cho tam giác abc nhọn nội tiếp (o) đường cao AH.Vẽ tiếp tuyến tại B và C. Gọi I và K lần lượt là hình chiếu của A trên các tiếp tuyến tại B và C
Chứng minh AHBI và AHCK nội tiếp
b) AIH=AHK
c) AH.AH=AK.AI
d) gọi M,N lần lượt là trung điểm của AI,AK. Tam giác ABC cần điều kiện gì để AH=AM+AN
Giải gim2 mình nhé :) mình cảm ơn
Cho (O;R) đường kính BC và A nằm trên đường tròn sao cho AB < AC . H là hình chiếu của A trên BC . Gọi M và N lần lượt là hình chiếu của H lên AB ,AC, MN cắt BC tại D , AH cắt MN tại I . a, chứng minh tứ giác BMNC nội tiếp và DM.DN=DB.DC b, đường thẳng vuông góc MN tại I ,cắt đường thẳng qua O vuông góc BC tại Q . QH cắt (O) tại P . Tính độ dài IQ theo R và chứng minh 3 điểm D,A,P thẳng hàng
GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N
a) chứng minh tứ giác BMHD, BMEC nội tiếp
b) chứng minh MC là tia phân giác của góc EMD
c) chứng minh H và N đối xứng với nhau qua BC
d) chứng minh OC vuông góc BE
2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e
a) chứng minh tứ giác bdmc, adhm nội tiếp
b) chứng minh ef//md
c) vẽ đường kính bk của (o). chứng minh ah=ck
d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)
3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e
a) chứng minh tứ giác mnhc, bdnc nội tiếp
b) chứng minh h và e đối xứng với nhau qua bc
c) chứng minh oa vuông góc dn
d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng