Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuấn Nguyễn

Cho ΔABC có ba góc nhọn (AB<AC) nội tiếp (O),đường cao AH.Trên đoạn AH lấy điểm D bất kỳ.Gọi M và N lần lượt là hình chiếu của D trên AB và AC.Chứng minh MN song song với tiếp tuyến tại A của (O)

Trần Tuấn Hoàng
29 tháng 4 2023 lúc 16:02

- Xét △AMD và △AHB có: \(\widehat{AMD}=\widehat{AHB}\left(=90^0\right)\)\(\widehat{BAH}\) là góc chung.

\(\Rightarrow\Delta AMD\sim\Delta AHB\left(g-g\right)\)

\(\Rightarrow\dfrac{AM}{AH}=\dfrac{AD}{AB}\Rightarrow AM.AB=AD.AH\left(1\right)\)

- Xét △AND và △AHC có: \(\widehat{AND}=\widehat{AHC}=90^0\)\(\widehat{CAH}\) là góc chung.

\(\Rightarrow\Delta AND\sim\Delta AHC\left(g-g\right)\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AN}{AH}\Rightarrow AD.AH=AN.AC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AM.AB=AN.AC\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét △AMN và △ACB có: \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt), \(\widehat{BAC}\) là góc chung.

\(\Rightarrow\Delta AMN\sim\Delta ACB\left(c-g-c\right)\)

\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)

Ta có \(OA=OB\) nên △OAB cân tại O.

\(\Rightarrow\widehat{OAB}=\dfrac{180^0-\widehat{AOB}}{2}\)

Xét (O): \(\widehat{AOB}=2\widehat{ACB}\left(=sđ\stackrel\frown{AB}\right)\)

\(\Rightarrow\widehat{OAB}=\dfrac{180^0-2\widehat{ACB}}{2}=90^0-\widehat{ACB}\)

\(\Rightarrow\widehat{OAB}+\widehat{AMN}=90^0\) nên MN vuông góc với OA.

=>MN song song với tiếp tuyến tại A của (O) (vì OA là bán kính của (O) ).


Các câu hỏi tương tự
Tuấn Nguyễn
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Anh Thư Nguyễn
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
nguyển thị thảo
Xem chi tiết
Thái Hoàng Anh
Xem chi tiết
Hien Thu
Xem chi tiết
Incognito
Xem chi tiết
Pham Trong Bach
Xem chi tiết