a: Xét tứ giác BMDH có
gócc BMD+góc BHD=180 độ
=>BMDH là tứ giác nội tiếp
b: góc AMN+góc OAM
=góc ADN+(180 độ-góc AOB)/2
=90 độ-góc HAC+90 độ-góc AOB/2
=180 độ-(90 độ-góc ACB)-góc ACB
=90 độ
=>MN vuông góc AO
=>MN//tiếp tuyến tại A của (O)
a: Xét tứ giác BMDH có
gócc BMD+góc BHD=180 độ
=>BMDH là tứ giác nội tiếp
b: góc AMN+góc OAM
=góc ADN+(180 độ-góc AOB)/2
=90 độ-góc HAC+90 độ-góc AOB/2
=180 độ-(90 độ-góc ACB)-góc ACB
=90 độ
=>MN vuông góc AO
=>MN//tiếp tuyến tại A của (O)
Cho ΔABC có ba góc nhọn (AB<AC) nội tiếp (O),đường cao AH.Trên đoạn thẳng AH lấy điểm D bất kì (D khác A và H).Gọi M và N lần lượt là hình chiếu vuông góc của D trên AB và AC
a)Chứng minh MN song song với tiếp tuyến tại A của (O)
b)Đường thẳng AH cắt MN tại I.Chứng minh khi D di động trên AH thì tâm đường tròn ngoại tiếp ΔBMI luôn thuộc một đường cố định
Cho ΔABC có ba góc nhọn (AB<AC) nội tiếp (O),đường cao AH.Trên đoạn AH lấy điểm D bất kỳ.Gọi M và N lần lượt là hình chiếu của D trên AB và AC.Chứng minh MN song song với tiếp tuyến tại A của (O)
Cho tam giác ABC nội tiếp (O) đường kính AB (AC < BC). Trên dây CB lấy điểm H (với H khác C và B). AH cắt đường tròn tại điểm thứ hai là D. Kẻ HQ vuông góc với AB (với Q thuộc AB)
a, Chứng minh tứ giác BDHQ nội tiếp
b, Biết CQ cắt (O) tại điểm thứ hai F, chứng minh DF // HQ
c, Chứng minh H cách đều các đường thẳng CD, CQ và DQ
d, Gọi M, N lần lượt là hình chiếu của F trên AC và CB. Chứng minh MN, AB, DF đồng quy
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O Trên cạnh BC lấy điểm d d khác B phẩy C sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm O tại M Gọi E là hình chiếu của M trên AC
a Chứng minh tứ giác CDME nội tiếp đường tròn
b/chứng minh MA x MB = MB x ME
C/Gọi i k lần lượt là trung điểm của AB và de chứng minh EK vuông góc với MK
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của MDC
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh AB2 + AC2 + CD2 + BD2 = 8R2
Cho (O;R) đường kính BC và A nằm trên đường tròn sao cho AB < AC . H là hình chiếu của A trên BC . Gọi M và N lần lượt là hình chiếu của H lên AB ,AC, MN cắt BC tại D , AH cắt MN tại I . a, chứng minh tứ giác BMNC nội tiếp và DM.DN=DB.DC b, đường thẳng vuông góc MN tại I ,cắt đường thẳng qua O vuông góc BC tại Q . QH cắt (O) tại P . Tính độ dài IQ theo R và chứng minh 3 điểm D,A,P thẳng hàng
Cho tam giác ABC nhọn nội tiếp trong đường tròn tâm O. Kẻ hai đường cao BI và Ck ( I thuộc AC và K thuộc AB ) của tam giác ABC
a/ Chứng minh tứ giác BKIC nội tiếp
b/ Gọi M và N lần lượt là giao điểm của BI và CK với đường tròn (O) (M khác B và N khác C)
chứng minh MN song song với IK
c/ Chứng minh OA vuông góc với IK
d/ Trong trường hợp tam giác ABC có AB<BC<AC . Gọi H là giao điểm của BI và CK . Tính số đo của góc BAC khi tứ giác BHOC nội tiếp
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O (AB< AC).Các đường cao AD và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh tứ giác BFHD nội tiếp
b) Gọi M là điểm bất kì trên cung nhỏ BC của đường tròn tâm O (M khác B,C) và N là điểm đối xứng của M qua BC .chứng minh tứ giác AHCN nội tiếp
c) Gọi I là giao điểm của AM và CH; J là giao điểm của AC và HN. Chứng minh góc AJI = góc ANC
d) Chứng minh rằng OA vuông góc với IJ