Cho các số phức z, w khác 0 và thỏa mãn |z-w| = 2|z| = |w|. Phẩn thực của số phức u = z w là:
A. a = 1 4
B. a = 1
C. a = 1 8
D. a = - 1 8
Cho số phức z thỏa mãn z − 3 + 4 i = 2 và w = 2 z + 1 − i . Khi đó w có giá trị lớn nhất là
A. 4 + 74
B. 2 + 130
C. 4 + 130
D. 16 + 74
Cho các số phức z thỏa mãn |z|=2và w=1- 3 i+(3-4i)z. Tìm giá trị lớn nhất của |w|
A. 8.
B. 9.
C.10.
D. 12.
Cho các số phức z và w thỏa mãn ( 3 - i ) z = z w - 1 + 1 - i . Tìm GTLN của T = w + i .
A. 2 2
B. 3 2 2
C. 2
D. 1 2
Cho số phức z thỏa mãn z - 3 + 4 i = 2 và w = 2z + 1 – i. Trong mặt phẳng phức, tập hợp điểm biểu diễn số phức w là đường tròn tâm I, bán kính R . Khi đó:
A. I (-7;9), R = 16
B. I (-7;9), R = 4
C. I (7;-9), R = 16
D. I (7;-9), R = 4.
Cho hai số phức z và w z ≠ 0, w ≠ 0 . Biết z − w = z + w . Khi đó điểm biểu diễn số phức z w
A. thuộc trục Ox
B. thuộc đường phân giác của góc phần tư thứ nhất và thứ ba.
C. thuộc trục Oy
D. thuộc đường phân giác của góc phần tư thứ hai và thứ tư
Cho hai số phức z, w thay đổi thỏa mãn z = 3 , z − w = 1 . Biết tập hợp điểm của số phức w là hình phẳng H. Tính diện tích S của hình H.
A. S = 20 π
B. S = 12 π
C. S = 4 π
D. S = 16 π
Cho hai số phức z, w thỏa mãn z − 3 − 2 i ≤ 1 w + 1 + 2 i ≤ w − 2 − i .
Tìm giá trị nhỏ nhất P min của biểu thức P = z − w .
A. P min = 3 2 − 2 2
B. P min = 2 + 1
C. P min = 5 2 − 2 2
D. P min = 2 2 + 1 2
Cho hai số phức z,w thỏa mãn z − 3 − 2 i ≤ 1 w + 1 + 2 i ≤ w − 2 − i . Tìm giá trị nhỏ nhất P m i n của biểu thức P = z − w .
A. P min = 3 2 − 2 2
B. P min = 3 2 + 2 2
C. P min = 2 + 1
D. P min = 5 2 − 2 2