a: \(P=\dfrac{a-3\sqrt{a}-a+2\sqrt{a}}{\sqrt{a}-2}:\dfrac{a-3\sqrt{a}-2a}{a-9}\)
\(=\dfrac{-\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{a-9}{-a-3\sqrt{a}}\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-3}{\sqrt{a}-2}\)
b: Để P>1 thì P-1>0
=>\(\dfrac{\sqrt{a}-3-\sqrt{a}+2}{\sqrt{a}-2}>0\)
=>căn a-2>0
=>a>4