Cho ba số a; b; c thoả mãn 0
Chứng minh: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}< \dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\)
Cho a, b, c là ba số dương thỏa mãn \(abc\)=1. Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}\)+\(\dfrac{1}{b^3\left(a+c\right)}\)+\(\dfrac{1}{c^3\left(a+b\right)}\)≥\(\dfrac{3}{2}\)
Cho các số thực a,b,c thoả mãn abc + a + c = b. Tìm min của P = \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{1+c^2}\)
Cho a,b,c dương thoả mãn: abc≥1. CMR:
\(\left(a+\dfrac{1}{a+1}\right).\left(b+\dfrac{1}{b+1}\right).\left(c+\dfrac{1}{c+1}\right)\ge\dfrac{27}{8}\)
Cho ba số a,b,c thỏa mãn a+b+c=\(\dfrac{3}{2}\). Chứng minh:
\(a^2+b^2+c^2\ge\dfrac{3}{4}\)
cho các số a, b, c khác 0 thoả mãn \(2ab+bc+2ca=0\). hãy tính \(A=\dfrac{bc}{8a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\)
Cho ba số a,b,c thỏa mãn :
+) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
+) \(a+b+c=2022\\ \)
Tính giá trị của biểu thức P = \(\left(a^{2019}+b^{2019}\right)\left(c^{2021}+b^{2021}\right)\left(a^{2023}+c^{2023}\right)\)
Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.