Đặt \(x=\sqrt[3]{3+\sqrt[3]{3}};y=\sqrt[3]{3-\sqrt[3]{3}}\) => \(x^3+y^3=3+\sqrt[3]{3}+3-\sqrt[3]{3}=6\)
Ta có: \(b^3-a^3=\left(2\sqrt[3]{3}\right)^3-\left(x+y\right)^3=24-\left(x+y\right)^3\)
= 4(x3 + y3) - (x3 + y3) - 3xy(x + y)
= 3(x3 + y3) - 3xy(x + y)
= 3(x + y)(x2 - xy + y2) - 3xy(x + y)
= 3(x + y)(x2 - xy + y2 - xy)
= 3(x + y)(x - y)2 > 0 (do x > y > 0)
=> b3 > a3
=> b > a (vì b;a > 0)