cho a,b,c,d tm a^2+b^2+(a+b)^2=c^2+d^2+(c+d)^2
cmr a^4+b^4+(a+b)^4=c^4+d^4+(c+d)^4
a, CMR với mọi số nguyên n không chia hết cho 5 thì \(n^4-1\) chia hết cho 5
b, Tìm tất cả các số nguyên tố a, b, c ,d, e tm \(a^4+b^4+c^4+d^4+e^4=abcde\)
c, Tìm các số nguyênduwongc a,b tm \(a\left(ab+1\right)⋮a^2+b\) và \(b\left(ab+1\right)⋮b^2-a\)
cho 4 số thực a,b,c,d tm a+b+c+d=4
cmr \(\frac{\left(a+\sqrt{b}\right)^2}{\sqrt{a^2-ab+b^2}}+\frac{\left(b+\sqrt{c}\right)^2}{\sqrt{b^2-bc+c^2}}+\frac{\left(c+\sqrt{d}\right)^2}{\sqrt{c^2-cd+d^2}}+\frac{\left(d+\sqrt{a}\right)^2}{\sqrt{d^2-ad+a^2}}\le16\)
cho a+b+c+d=4. cm: 1/ab +1/cd >=(a^2+b^2+c^2+d^2)/2
Bài 1:Cho a,b,c,d là các số dương. Chứng minh rằng :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}+\frac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\ge\frac{a+b+c+d}{4}\)
Bài 2:Cho \(a>0,b>0,c>0\).\(CM:\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 3: a) Cho x,y,>0. CMR:\(\frac{x^3}{x^2+xy+y^2}\ge\frac{2x-y}{3}\)
b) Chứng minh rằng\(\Sigma\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)
Cho a,b,c,d là 4 số thực dương thỏa mãn a+b+c+d=1.CMR:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{1}{2}\)
Cho `a,b,c,d>=0.CMR:a/(b^2+c^2+d^2)+b/(c^2+d^2+a^2)+c/(d^2+a^2+b^2)+d/(a^2+b^2+c^2)>=4/(a+b+c+d)`.
cho a,b,c > 0 , tm a +b +c = 1 . CM : \(a^4/(a^3 + b^3) + b^4/(b^3 + c^3 )+ c^4/(c^3 + a^3) >= 1/2\)
Cho a,b,c,d >0, a + b + c + d=4.cmr: a/(1 + b^2c) + b/(1 + c^2d) + c/(1 + d^2a) + d/(1 + a^2b) >=2