cho 3 số dương thỏa mãn a+b+c=3. Chứng minh rằng \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)
a, b, c > 0. CM: \(ab\left(a+b-2c\right)+bc\left(b+c-2a\right)+ac\left(c+a-2b\right)\ge0\)
Let \(a,b,c\ge0\) such that \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ne0\) . Prove that:
\(a^3+b^3+c^3+3abc-ab\left(a+b\right)-bc\left(b+c\right)-ca\left(c+a\right)\ge abc\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}-3\right)\)
Cho biểu thức P =\(\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2a+2c-b\right)^2\)
1) Chứng minh P =\(9\left(a^2+b^2+c^2\right)\)
2)Nếu a,b,c là các số thực thỏa mãn ab + bc + ca = -1, tìm giá trị nhỏ nhất của biểu thức P
Rút gọn C=\(\dfrac{\text{ a^2b+b^2c+c^2a-ab^2-bc^2-ca^2}}{a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)}\)
Cho các số thực a,b,c.Chứng minh rằng
a,\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\))
b,\(\left(ab+bc+ca\right)^2\ge\)3abc(a+b+c)
Cho \(a,b,c\ge0\) . Tìm hệ số k tốt nhất thoả mãn đẳng thức sau:
\(\frac{a^3}{2a+b+c}+\frac{b^3}{2b+c+a}+\frac{c^2}{2c+b+a}+\frac{k\left(a+b+c\right)abc}{ab+bc+ca}\ge\left(\frac{1}{4}+\frac{k}{3}\right)\left(a^2+b^2+c^2\right)\)
Let \(a,b,c,k\) be positive real numbers such that \(k\left(ab+bc+ca\right)+2abc\le k^3\) . Prove that:
\(\left(1\right)k\left(a+b+c\right)\ge2\left(ab+bc+ca\right)\)
\(\left(2\right)k\left(a^3+b^3+c^3\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\left(3\right)k\left(a^{2n-1}+b^{2n-1}+c^{2n-1}\right)\ge2\left(a^nb^n+b^nc^n+c^na^n\right)\) \(\left(n\ge0;n\in R\right)\)
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).