Cho a, b, c > 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) . Tìm MAX của :
A= \(\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ac+a^2}}\)
\(\sqrt {\dfrac{{{a^3}}}{{{a^2} + ab + {b^2}}}} + \sqrt {\dfrac{{{b^3}}}{{{b^2} + bc + {c^2}}}} + \sqrt {\dfrac{{{c^3}}}{{{c^2} + ac + {a^2}}}} \geqslant \dfrac{{\sqrt a + \sqrt b + \sqrt c }}{{\sqrt 3 }}\)
a,b,c ko âm sao cho ko có hai số nào đồng thời bằng 0
Cho a,b,c>0 thỏa mãn ab+bc+ac<=1
CMR: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
Cho a,b,c > 0 thỏa a+b+c=abc. Tìm GTLN của BT :
\(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}+\dfrac{b}{\sqrt{ac\left(1+b^2\right)}}+\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTLN của P = \(\dfrac{a}{\sqrt{a^2+3}}+\dfrac{b}{\sqrt{b^2+3}}+\dfrac{c}{\sqrt{c^2+3}}\)
cho a,b,c>0 chứng minh
\(P=\dfrac{a}{\sqrt{ab+b^2}}+\dfrac{b}{\sqrt{bc+c^2}}+\dfrac{c}{\sqrt{ca+a^2}}\ge\dfrac{3\sqrt{2}}{2}\)
cho các số thực dương a,b,c thỏa mãn ab+bc+ca=3.
chứng minh: M=\(\sqrt{\dfrac{bc}{a^2+3}}+\sqrt{\dfrac{ac}{b^2+3}}\sqrt{\dfrac{ab}{c^2+3}}\le\dfrac{3}{2}\)
Cho a,b,c là 3 số thực dương tùy ý Chứn minh rằng
\(\dfrac{a}{\sqrt{ab+b^2}}+\dfrac{b}{\sqrt{bc+b^2}}+\dfrac{c}{\sqrt{ac+a^2}}\ge\dfrac{3\sqrt{2}}{2}\)
Cho a,b,c>0 thỏa mãn ab+bc+ca=1. Tìm GTLN của \(Q=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)