a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại E, trên cạnh BC lấy điểm F sao cho BF=BA.
a) Chứng minh: △ABE= △FBE
b) Chứng minh: EF vuông góc với BC
c) Trên tia đối của tia EF lấy M sao cho EM =EC. Chứng minh B, A, M thẳng hàng
Cho ABC vuông tại A, tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy E sao cho BE = BA.
a) Chứng minh: AD = DE và DE BC.
b) Gọi I là giao điểm của AE và BD. Chứng minh: BI AE.
c) Từ A kẻ AM song song với DE (M BD).
Chứng minh: AE là phân giác góc MAD.
d) Kẻ EK AB (K AB). Chứng minh: E, M, K thẳng hàng.
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy E sao cho BE bằng BA.
a) Chứng minh AD = DE và DE vuông góc BC.
b) Gọi I là giao điểm của AE và BD. Chứng minh: BI vuông góc AE.
c) Từ A kẻ AM song song với DE (M thuộc BD) Chứng minh: AE là phân giác góc MAD.
d) Kẻ EK vuông góc AB (K thuộc AB) Chứng minh: E, M, K thẳng hàng
Cho △ ABC vuông tại A ,tia phân giác của góc B cắt AC tại D kẻ DE vuông góc BC (E ∈ BC). Chứng minh △ BAD = △ BED
Cho △ ABC vuông tại A ,tia phân giác của góc B cắt AC tại D kẻ DE vuông góc BC (E ∈BC)
a) Chứng minh △BAD=△BED
b) Chứng minh BD là đường trung trực của đoạn thẳng AE
c) Gọi F là giao điểm của hai đường thẳng AB và DE . Chứng minh AE // FC
Cho tam giác ABC vuông tại A, có góc ABC = 60*. Trên tia BC lấy điểm D sao cho BD = BA. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại E, cắt tia BA tại F.
a) Tính số đo góc ACB và so sánh độ dài các cạnh của tam giác ABC.
b) Chứng minh: BE là đường trung trực của đoạn thẳng AD và BE là tia phân giác của góc ABC.
c) Chúng minh: AD // FC.
d) Chứng minh: AC = 3DE.
Cho ∆ABC vuông tại A(AB < AC) . Trên cạnh BC, lấy điểm E sao cho BA = BE, đường thẳng vuông góc với BC tại E cắt AC tại D a) Chứng minh ∆ABD = ∆EBD. b) Chứng minh BD là tia phân giác của góc ABE c) DE cắt AB tại M. Chứng minh BM = BC
cho tam giác ABC vuông tại A , tia phân giác góc B cắt AC tại E . Trên cạnh BC lấy điểm D sao cho BD=BA
a) chứng minh tam giác ABE = tam giác DBE
b) chứng minh ED vuông góc với BC
c) Tia BE cắt tia BA tại K . Chứng minh BK=BC
d) từ A kẻ AH vuông góc với BC(H €BC); AH giao BE tại I. Chứng minh AD là đường trung trực của IE
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt BC tại D, trên tia AC lấy điểm E sao cho góc ADB = góc ADE.
a) Chứng minh tam giác ABE là tam giác cân.
b) Đường thẳng DE cắt tia AB tại F. Chứng minh tam giác AFC là tam giác cân.
c) Chứng minh BE // FC.
d) Qua C kẻ đường thẳng vuông góc với AC, qua F kẻ đường thẳng vuông góc với AF, hai đường thẳng này cắt nhau tại I. Chứng minh ba điểm A, D, I thẳng hàng.
Cho tam giác ABC vuông tại A. Kẻ BD là tia phân giác của ABC ( D thuộc AC ) Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh: tam giác ABD = EBD
b) Chứng minh: DE = AD và DE vuông góc với BC.
c) Chứng minh: BD là đường trung trực của đoạn AE.
d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại
D.Trên cạnh BC lấy điểm E sao cho BE = BA.
a. Chứng minh ΔBDA = ΔBDE và DE vuông góc với BE.
b. Tia BA cắt tia ED tại F. Chứng minh tam giác ADF=EDC.
c. Gọi H là giao điểm của tia BD và đọan thẳng CF. Vẽ EK vuông góc với CF tại K. Chứng minh rằng: BH và EK song song.
GIÚP MIK GẤP THẬT SỰ CẢM ƠN! VẼ HÌNH GIÚP MÌNH LLUÔN NHA ^^