a: BC=10cm
b: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
DO đó; ΔABD=ΔEBD
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BC
a: BC=10cm
b: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
DO đó; ΔABD=ΔEBD
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BC
Cho AABC vuông tại A. Biết AB = 9cm, AC = 12cm. a) Tính BC?. b) Vẽ BD là tia phân giác của góc ABC cắt AC tại D. Từ D vẽ DE vuông góc với BC tại E. Cm: AABD = AEBD. c) Chứng minh: AE 1 BD. d) Kéo dài ED cắt BA tại F. Chứng minh: AE // FC.
Cho ∆ABC vuông tại A có số đo góc B bằng 53°.
A) tính số đo góc C
B)trên cạnh BC, lấy điểm D sao cho BD =BA. Tia phân giác của góc B cắt AC tại điểm E. Chứng minh ∆BEA =∆ BED. Từ đó suy ra ED vuông góc với BC.
C) trên tia BA lấy điểm M sao cho BM = BC . chứng minh ∆BEM=∆BEC.
D) chứng minh MD vuông góc với BC Từ đó suy ra M,E,D thẳng hàng
cho tam giác ABC có AB =6cm, AC=8cm, BC=10cm
a) chứng ninh tam giác ABC vuông tại A
b) vẽ tia phân giác BD của góc ABC ( D thuộc AC) từ D vẽ DE vuông BC (E thuộc BC) .Chứng minh DA=DE
c) kéo dài ED và BA cắt nhau tại F. Chứng minh DF>DE
d)trên tia đối của tia AB lấy điểm M sao cho AM=CH. chứng minh ba điểm D,M,H thẳng hàng
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
Cho tam giác ABC vuông tại A.Tia phân giác của góc B cắt AC tại D .Trên cạnh BC lấy điểm E sao cho BE=AB.
a/ Tia ED cắt BA tại M .Chứng minh: EC=AM
b/ Chứng minh:AE//MC
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = AB. a) Chứng minh tam giác ABD = tam giác EBD. b) Tia ED cắt BA tại M. Chứng minh EC = AM. c) Chứng minh AE // MC
Cho ∆ABC vuông tại A(AB < AC) . Trên cạnh BC, lấy điểm E sao cho BA = BE, đường thẳng vuông góc với BC tại E cắt AC tại D a) Chứng minh ∆ABD = ∆EBD. b) Chứng minh BD là tia phân giác của góc ABE c) DE cắt AB tại M. Chứng minh BM = BC
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Chứng minh rằng: tam giác AMB = tam giác AMC.
a) Trên cạnh AB lấy điểm D. Từ D kẻ đường vuông góc với AM tại K và kéo dài cắt cạnh AC TẠI E. Chứng minh AD=AE.
b) Trên tia đối của tia ED lấy điểm F sao cho EF=MC, gọi H là trung điểm của EC. Chứng minh rằng: ba điểm M, H, F thẳng hàng.
Cho ΔABC vuông tại A. Biết AB =6 cm ; AC =8cm
a) Tính BC
b) Trên tia BA lấy điểm D sao cho BD = BC. Từ D kẻ
DH \(\perp\)BC tại H, DH cắt AC tại E. Chứng minh:Δ BAC=Δ BHD
c) Chứng minh: BE là phân giác ABC .
d) Chứng minh: BE vuông góc DC.