Đáp án A
Vì khi a = 0, b = 0, m = 0, n = 0 khi đó các biểu thức đều không có nghĩa nên không có biểu thức nào đúng.
Bài này em nhớ 0 0 không có nghĩa
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Đáp án A
Vì khi a = 0, b = 0, m = 0, n = 0 khi đó các biểu thức đều không có nghĩa nên không có biểu thức nào đúng.
Bài này em nhớ 0 0 không có nghĩa
Cho các số thực a, b, m, n sao cho 2 m + n < 0 và thỏa mãn điều kiện log 2 a 2 + b 2 + 9 = 1 + log 2 3 a + 2 b 9 − m .3 − n .3 − 4 2 m + n + ln 2 m + n + 2 2 + 1 = 81
Tìm giá trị nhỏ nhất của biểu thức P = a − m 2 + b − n 2
A. 2 5 − 2.
B. 2.
C. 5 − 2.
D. 2 5 .
Cho a = log 2 3 và b = log 3 5. Biết rằng log 6 300 = m a + n . a b + 2 1 + a , với m và n là các số nguyên. Tính giá trị biểu thức m + n .
A. 2.
B. 3.
C. -1.
D. 0.
Cho hàm số f x = log 1 2 log 4 log 1 4 log 16 log 1 16 x . Tập xác định của f ( x) là D=(a;b) trong đó a và b là các số thực, b − a = m n , m và n là các số tự nhiên nguyên tố cùng nhau. Tìm tổng m + n.
A. 19
B. 31
C. 271
D. 319
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 ; e 2 y = 1 . Số phần tử của S là:/
A. 0
B. 1
C. 2
D. Vô số
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(6;-3;4), B(a;b;c). Gọi M,N,P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng toạ độ (Oxy),(Oyz),(Ozx) sao cho M,N,P nằm giữa A và B thoả mãn AM=MN=NP=PB.. Giá trị của biểu thức a+b+c bằng
A. -17
B. -34
C. -19
D. -38
Cho m, n là các số tự nhiên và p là số nguyên tố thỏa mãn .\(\frac{p}{m-1}=\frac{m+n}{p}\)
Tính A = p2 - n ta được A bằng mấy ??
Cho m, n là các số tự nhiên và p là số nguyên tố thỏa mãn .\(\frac{p}{m-1}=\frac{m+n}{p}\)
Tính A = p2 - n ta được A bằng mấy ??
15.
Cho a, b, c là các số thực dương thỏa mãn \(a+b+c+ab+bc+ac=6\)
Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
16.
Xét các số thực a, b, c ( a khác 0) sao cho:
Phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm m, n thỏa mãn: \(0\le m\le1;0\le n\le1\).
Tìm giá trị nhỏ nhất của biểu thức: \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
17.
Cho ba số thực không âm a, b, c và thỏa amnx a+b+c=1.
Chứng minh rằng: \(a+2b+c\ge4\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
18.
Cho ba số thực a, b, c. Chứng minh rằng:
\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A 6 ; - 3 ; 4 , B a ; b ; c . Gọi M,N,P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng toạ độ (Oxy),(Oyz),(Ozx) sao cho M,N,P nằm giữa A và B thoả mãn A M = M N = N P = P B . Giá trị của biểu thức a+b+c bằng
A. - 17
B. - 34
C. - 19
D. - 38