Cho a, b, c là các số thực dương thoả mãn:
\(a+b+c=3\)
và \(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=6\)
Tính giá trị của biểu thức: \(M=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2023}}\)
cho a,b,c là các số thực dương thoả mãn \(b=\dfrac{c+a}{2}\).
Tính giá trị của biểu thức \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right).\left(\sqrt{a}+\sqrt{c}\right)\)
cho a,b,c là 3 số thực dương thỏa mãn điều kiện a+b+c+\(\sqrt{abc}\)=4.
tính giá trị của biểu thức: A=\(\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
Cho các số thực không âm $a, b, c$ thỏa mãn: $a+b+c=2021$. Tìm giá trị lớn nhất và giả trị nhỏ nhất của biểu thức: $P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}$.
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). Tìm giá trị lớn nhất nhất của biểu thức: \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2}-ac+a^2}\)
Cho 3 số thực dương a,b,c thỏa mãn: a + b + c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
Tính giá trị biểu thức M = \(\frac{a+1}{\sqrt{a}+\sqrt{b}}+\frac{b+1}{\sqrt{b}+\sqrt{c}}+\frac{c+1}{\sqrt{c}+\sqrt{a}}\)
Come on!!!!!
1.a).cho a,b,clà các số thực dương thỏa mãn a+b+c=abc.chứng minh rằng:
\(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{c}+\sqrt{a}}\)
b) cho các số thực x khác 0 thỏa mãn điều kiện 2x+1=\(\left(\frac{1}{x}-x\right)\)\(\left(\frac{1}{x}+x\right)\)
Tính giá trị biểu thức P=\(\sqrt{x^8+21x+12}\)
Cho a, b, c là các số thực không âm thỏa mãn a+b+c=3. Tìm giá trị lớn nhất của biểu thức \(K = \sqrt{12a+(b-c)^2} + \sqrt{12b+(a-c)^2} + \sqrt{12c+(a-b)^2}\)
Cho các số thực dương \(a,b,c\) thỏa mãn : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). Tìm giá trị lớn nhất của biểu thức :
\(P=\sqrt{\dfrac{a}{a+bc}}+\sqrt{\dfrac{b}{b+ac}}+\sqrt{\dfrac{c}{c+ab}}\)