Lời giải:
Áp dụng BĐT Cô-si:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)$
Cũng áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)\geq a+b+c+3$
$\Rightarrow a^2+b^2+c^2\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$