Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tho Nguyễn Văn

cho 3 số dương thỏa mãn \(a+b+c\le\dfrac{3}{2}\). tìm GTNN của :

\(A=\) \(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)

Trần Tuấn Hoàng
4 tháng 8 2022 lúc 17:16

\(A=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)

\(=\dfrac{1}{\sqrt{1^2+4^2}}.\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(1^2+4^2\right)}+\dfrac{1}{\sqrt{1^2+4^2}}.\sqrt{\left(b^2+\dfrac{1}{c^2}\right)\left(1^2+4^2\right)}+\dfrac{1}{\sqrt{1^2+4^2}}.\sqrt{\left(c^2+\dfrac{1}{a^2}\right)\left(1^2+4^2\right)}\)\(=\dfrac{1}{\sqrt{17}}.\left[\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(1^2+4^2\right)}+\sqrt{\left(b^2+\dfrac{1}{c^2}\right)\left(1^2+4^2\right)}+\sqrt{\left(c^2+\dfrac{1}{a^2}\right)\left(1^2+4^2\right)}\right]\)

\(\ge\dfrac{1}{\sqrt{17}}.\left[\left(a.1+\dfrac{1}{b}.4\right)+\left(b.1+\dfrac{1}{c}.4\right)+\left(c.1+\dfrac{1}{a}.4\right)\right]\)

\(=\dfrac{1}{\sqrt{17}}.\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)\)

\(=\dfrac{1}{\sqrt{17}}.\left[\left(a+\dfrac{1}{4a}\right)+\left(b+\dfrac{1}{4b}\right)+\left(c+\dfrac{1}{4c}\right)+\dfrac{15}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)

\(\ge\dfrac{1}{\sqrt{17}}.\left(1+1+1+\dfrac{15}{4}.\dfrac{9}{a+b+c}\right)\)

\(\ge\dfrac{1}{\sqrt{17}}.\left(3+\dfrac{15}{4}.\dfrac{9}{\dfrac{3}{2}}\right)\)

\(=\dfrac{1}{\sqrt{17}}.\dfrac{51}{2}=\dfrac{3\sqrt{17}}{2}\)

- Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

- Vậy \(MinA=\dfrac{3\sqrt{17}}{2}\)

Xyz OLM
4 tháng 8 2022 lúc 17:45

Ta có \(A\sqrt{\dfrac{17}{4}}=\sqrt{\dfrac{17}{4}\left(a^2+\dfrac{1}{b^2}\right)}+\sqrt{\dfrac{17}{4}\left(b^2+\dfrac{1}{c^2}\right)}+\sqrt{\dfrac{17}{4}\left(c^2+\dfrac{1}{a^2}\right)}\)

Có :\(\sqrt{\dfrac{17}{4}\left(a^2+\dfrac{1}{b^2}\right)}=\sqrt{\left[2^2+\left(\dfrac{1}{2}\right)^2\right]\left[\left(\dfrac{1}{b}\right)^2+a^2\right]}\ge\sqrt{\left(\dfrac{2}{b}+\dfrac{a}{2}\right)^2}\)

\(\dfrac{2}{b}+\dfrac{a}{2}\)

Tương tự đươc \(\dfrac{A\sqrt{17}}{2}\ge\dfrac{2}{b}+\dfrac{a}{2}+\dfrac{2}{c}+\dfrac{b}{2}+\dfrac{2}{a}+\dfrac{c}{2}\)

\(=\left(\dfrac{a}{2}+\dfrac{1}{8a}\right)+\left(\dfrac{b}{2}+\dfrac{1}{8b}\right)+\left(\dfrac{c}{2}+\dfrac{1}{8c}\right)+\dfrac{15}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\ge2\sqrt{\dfrac{a}{2}.\dfrac{1}{8a}}+2\sqrt{\dfrac{b}{2}.\dfrac{1}{8b}}+2\sqrt{\dfrac{c}{2}.\dfrac{1}{8c}}+\dfrac{15}{8}.\dfrac{9}{a+b+c}\)

\(\ge\dfrac{3}{2}+\dfrac{15}{8}.\dfrac{9}{\dfrac{3}{2}}=\dfrac{51}{4}\Leftrightarrow A\ge\dfrac{3\sqrt{17}}{2}\)

"=" KHI a = b = c = 1/2

 


Các câu hỏi tương tự
Hi Mn
Xem chi tiết
Người Vô Danh
Xem chi tiết
Vũ Thanh Lương
Xem chi tiết
Trần Đức Huy
Xem chi tiết
minh nguyen
Xem chi tiết
S U G A R
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn An
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Thành Nam
Xem chi tiết