\(a;b\ge0\Rightarrow\dfrac{a}{1+b}+\dfrac{b}{1+a}\ge0\)
Mặt khác: \(0\le a;b\le1\Rightarrow1+a\ge b+a\Rightarrow\dfrac{b}{1+a}\le\dfrac{b}{a+b}\)
Tương tự ta có: \(\dfrac{a}{1+b}\le\dfrac{a}{a+b}\)
Cộng vế: \(\dfrac{a}{1+b}+\dfrac{b}{1+a}\le\dfrac{a}{a+b}+\dfrac{b}{a+b}=1\) (đpcm)