a) Ta có: \(P=5x^2+4xy-6x+y^2+2030\)
\(=\left(4x^2+4xy+y^2\right)+\left(x^2-6x+9\right)+2021\)
\(=\left(2x+y\right)^2+\left(x-3\right)^2+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-3=0\\y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2x=-6\end{matrix}\right.\)
b) Ta có: \(a^5-5a^3+4a\)
\(=a\left(a^4-5a^2+4\right)\)
\(=a\left(a^2-4\right)\left(a^2-1\right)\)
\(=\left(a-2\right)\left(a-1\right)\cdot a\cdot\left(a+1\right)\left(a+2\right)\)
Vì a-2;a-1;a;a+1;a+2 là tích của 5 số nguyên liên tiếp
nên \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5!\)
hay \(a^5-5a^3+4a⋮120\)