a: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có
\(\widehat{FBH}\) chung
Do đó: ΔBFH~ΔBEA
b: Xét ΔBDA vuông tại D và ΔBFC vuông tại F có
\(\widehat{DBA}\) chung
Do đó: ΔBDA~ΔBFC
=>\(\dfrac{BD}{BF}=\dfrac{BA}{BC}\)
=>\(BD\cdot BC=BA\cdot BF\)
c: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
\(\widehat{ECB}\) chung
Do đó: ΔCEB~ΔCDA
=>\(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)
=>\(CE\cdot CA=CD\cdot CB\)
\(BF\cdot BA+CE\cdot CA\)
\(=BD\cdot BC+CD\cdot CB\)
\(=BC\left(BD+CD\right)=BC^2\)