Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
27.Trúc Quyên

Câu 11. Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của AD và BC. a) Tìm giao tuyến của hai mặt phẳng (IBC) và (JAD). b) Điểm M là trung điểm cạnh AB, điểm N nằm trên cạnh AC thỏa 2NA=NC. Tìm giao tuyến của hai mặt phẳng (IMN) và (DBN). c) Xác định giao điểm của (NIJ) và cạnh BD

Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 13:56

a: \(I\in AD\subset\left(JAD\right)\)

\(I\in IB\subset\left(IBC\right)\)

Do đó: \(I\in\left(JAD\right)\cap\left(IBC\right)\left(1\right)\)

\(J\in BC\subset\left(IBC\right)\)

\(J\in JA\subset\left(JAD\right)\)

Do đó: \(J\in\left(IBC\right)\cap\left(JAD\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(JAD\right)\cap\left(IBC\right)=JI\)

b: Xét ΔABD có

M,I lần lượt là trung điểm của AB,AD

=>MI là đường trung bình của ΔABD

=>MI//BD

Xét (IMN) và (DBN) có

\(N\in\left(IMN\right)\cap\left(DBN\right)\)

IM//BD

Do đó: (IMN) giao (DBN)=xy, xy đi qua N và xy//IM//BD

c: Chọn mp(ABD) có chứa BD

\(I\in AD\subset\left(ABD\right)\)

\(I\in NI\subset\left(NIJ\right)\)

Do đó: \(I\in\left(ABD\right)\cap\left(INJ\right)\)(3)

Trong mp(ABC), gọi K là giao điểm của JN với AB

\(K\in AB\subset\left(ABD\right)\)

\(K\in JN\subset\left(INJ\right)\)

Do đó: \(K\in\left(ABD\right)\cap\left(NIJ\right)\)(4)

Từ (3) và (4) suy ra \(\left(ABD\right)\cap\left(NIJ\right)=IK\)

Gọi E là giao điểm của BD với IK

=>E là giao điểm của BD với mp(NIJ)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Ngoc Nguyen
Xem chi tiết
Vu Khanh Linh
Xem chi tiết
Thùy Dương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết