a,Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (BCD)
Hiển nhiên : D ∈ (KAD) và D ∈ (BCD)
⇒ (KAD) \(\cap\) (BCD) = DK
b, Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (IBC)
Hiển nhiên I ∈ (IBC), mà I ∈ AD nên I ∈ (KAD)
⇒ (KAD) \(\cap\) (BCI) = IK
c, Trong (ABD) gọi E là giao điểm của BI và DM
⇒ \(\left\{{}\begin{matrix}E\in\left(IBC\right)\\E\in\left(DMN\right)\end{matrix}\right.\)
Trong (ACD) gọi F là giao điểm của CI và DN
⇒ \(\left\{{}\begin{matrix}F\in\left(IBC\right)\\F\in\left(DMN\right)\end{matrix}\right.\)
Vậy (DMN) \(\cap\) (IBC) = EF