a: Xét ΔNMI vuông tại M và ΔNKI vuông tại K co
NI chung
góc MNI=góc KNI
=>ΔNMI=ΔNKI
b: Xet ΔIMA vuông tại M và ΔIKP vuông tại K có
IM=IK
góc MIA=góc KIP
=>ΔIMA=ΔIKP
=>KI=IM
=>KI<IA
a: Xét ΔNMI vuông tại M và ΔNKI vuông tại K co
NI chung
góc MNI=góc KNI
=>ΔNMI=ΔNKI
b: Xet ΔIMA vuông tại M và ΔIKP vuông tại K có
IM=IK
góc MIA=góc KIP
=>ΔIMA=ΔIKP
=>KI=IM
=>KI<IA
Cho △MNP vuông tại M (MN < MP). Kẻ đường phân giác NI của \(\widehat{MNP}\) ( I ∈ MP). Trên cạnh NP lấy điểm K sao cho NK = NM. Chứng minh rằng :
a, △ IMN = △ IKN b, Gọi A là giao điểm KI và NM. Chứng minh NI ⊥ AP
Cho tam giác MNP vuông tại M, có NP = 10cm, MN = 8cm. Kẻ đường phân giác NI ( I thuộc MP). Kẻ ID vuông góc với NP ( D thuộc NP)
a, Tính MP
b. chứng minh tam giác MNI = tam giác DNI
c, chứng minh NI là đường trung trực của MD
d. Gọi E là giao điểm của NM và DI . Chứng minh NI vuông góc với EP
Cho ∆MNP vuông tại M, MN < MP phân giác NI, I thuộc MP gọi H là hình chiếu của I trên Np lấy B thuộc MP sao cho MB=MN từ B kẻ đường thẳng d vuông góc với MP và cắt tia IH tại K. Chứng minh góc INK= 45°
Cho ∆MNP vuông tại M, MN < MP phân giác NI, I thuộc MP gọi H là hình chiếu của I trên Np lấy B thuộc MP sao cho MB=MN từ B kẻ đường thẳng d vuông góc với MP và cắt tia IH tại K. Chứng minh góc INK= 45°
Cho ∆MNP vuông tại M, MN < MP phân giác NI, I thuộc MP gọi H là hình chiếu của I trên Np lấy B thuộc MP sao cho MB=MN từ B kẻ đường thẳng d vuông góc với MP và cắt tia IH tại K. Chứng minh góc INK= 45°
Cho tam giác MNP vuông tại M (MN < MP). Vẽ tia phân giác NI (I thuộc MP), từ I kẻ IK vuông góc với NP tại K. Gọi Q là giao điểm của tia KI và tia NM. Chứng minh rằng: 1) ANMK là tam giác cân 2) ANQP là tam giác cân 3) MK // QP
Cho tam giác MNP vuông tại M, vẽ tia phân giác NI. Kẻ ME vuông góc với NI, đường thẳng ME cắt NP ở K. Đường thẳng qua M và song song với IK cắt NI ở H, cắt NP ở F
Chứng minh a) NM=NP
b) Mf vg góc với NP
c KH//MP
cho tam giác MNP vuông tại M, đường phân giác ND( D thuộc MP). Kẻ ME vuông góc với ND (E thuộc ND). ME cắt NP tại K. Chứng minh a) DK vuông góc với NP b) Kẻ MH vuông góc với NP( H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
Cho tam giác MNP vuông tại M, Kẻ MI vuông góc với NP tại I. Vẽ MK là tia phân giác của
IMP (K∈IP). Đường thẳng đi qua K và vuông góc với MP, cắt MP tại A.
1) Chứng minh KM là tia phân giác IKA.
2) Chứng minh IK < KP.
3) Gọi giao điểm của AK và MI là B. Chứng minh MK⊥BP và IA//BP.