Câu 1
1) \(A=\sqrt{20}-\sqrt{45}+\sqrt{6+2\sqrt{5}}\)
\(=2\sqrt{5}-3\sqrt{5}+\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1}\)
\(=-\sqrt{5}+\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=-\sqrt{5}+\sqrt{5}+1\)
\(=1\)
2) ĐKXĐ: \(x>0;x\ne1\)
\(B=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(\Rightarrow B=\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{1}{2}\)
\(\Leftrightarrow2\left(\sqrt{x}-1\right)=\sqrt{x}\)
\(\Leftrightarrow2\sqrt{x}-2=\sqrt{x}\)
\(\Leftrightarrow2\sqrt{x}-\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Rightarrow x=4\left(tmđk\right)\)
Câu 5 :
Ta có : \(6a+3b+2c=abc\) \(\Rightarrow\dfrac{6}{bc}+\dfrac{3}{ac}+\dfrac{2}{ab}=1\)
Đặt : \(\left\{{}\begin{matrix}\dfrac{1}{a}=x\\\dfrac{2}{b}=y\\\dfrac{3}{c}=z\end{matrix}\right.\) với \(x,y,z>0\) \(\Rightarrow xy+yz+zx=1\)
Ta biến đổi : \(\dfrac{1}{\sqrt{a^2+1}}=\sqrt{\dfrac{\dfrac{1}{a^2}}{1+\dfrac{1}{a^2}}}=\sqrt{\dfrac{x^2}{1+x^2}}=\sqrt{\dfrac{x^2}{xy+xz+yz+x^2}}=\sqrt{\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}}\)
Chứng minh tương tự ta có :
\(\dfrac{1}{\sqrt{b^2+4}}=\sqrt{\dfrac{y^2}{\left(y+z\right)\left(y+x\right)}}\) ; \(\dfrac{1}{\sqrt{c^2+9}}=\sqrt{\dfrac{z^2}{\left(z+x\right)\left(z+y\right)}}\)
Do đó : \(Q=\sqrt{\dfrac{x^2}{\left(x+z\right)\left(x+y\right)}}+\sqrt{\dfrac{y^2}{\left(y+z\right)\left(y+x\right)}}+\sqrt{\dfrac{z^2}{\left(z+x\right)\left(z+y\right)}}\)
Áp dụng BĐT Cô - si ta được :
\(Q=\sqrt{\dfrac{x^2}{\left(x+z\right)\left(x+y\right)}}+\sqrt{\dfrac{y^2}{\left(y+z\right)\left(y+x\right)}}+\sqrt{\dfrac{z^2}{\left(z+x\right)\left(z+y\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{y}{y+x}+\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{x+z}{x+z}+\dfrac{x+y}{x+y}+\dfrac{z+y}{z+y}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\sqrt{3}\\b=2\sqrt{3}\\c=3\sqrt{3}\end{matrix}\right.\)
Vậy Max \(P=\dfrac{3}{2}\) khi \(\left\{{}\begin{matrix}a=\sqrt{3}\\b=2\sqrt{3}\\c=3\sqrt{3}\end{matrix}\right.\)
Câu 2
1) Phương trình \(x^2-6x+5=0\) có:
\(a+b+c=1-6+5=0\)
\(\Rightarrow\) Phương trình có hai nghiệm phân biệt \(x_1=1\) và \(x_2=\dfrac{c}{a}=5\)
2) \(\left\{{}\begin{matrix}2\left(x+2\right)=3\left(y-1\right)\\3x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4=3y-3\\3x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-7\\3x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-7\\9x+3y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11x=11\\3x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\3+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Câu 1
1) A=√20−√45+√6+2√5A=20−45+6+25
=2√5−3√5+√(√5)2+2√5+1=25−35+(5)2+25+1
=−√5+√(√5+1)2=−5+(5+1)2
=−√5+√5+1=−5+5+1
=1=1
2) ĐKXĐ: x>0;x≠1x>0;x≠1
=(1√x(√x−1)+1√x−1).(√x−1)2√x+1=(1x(x−1)+1x−1).(x−1)2x+1
=√x−1√x=x−1x