\(x^2-2\left(m-3\right)x-6m-7\\\Delta'=\left(m-3\right)^2-\left(-6m-7\right)=m^2-6m+9+6m+7\\ =m^2+16>0\forall m\)
=> pt luôn có 2 no pb
theo viet \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1.x_2=-6m-7\end{matrix}\right.\)
\(C=\left(x_1+x_2\right)^2+8x_1x_2\\ =\left[2\left(m-3\right)\right]^2+8\left(-6m-7\right)\\ =4\left(m-3\right)^2-48m-56\\ =4\left(m^2-6m+9\right)-48m-56\\ =4m^2-72m-20\\ =\left(2m\right)^2-2.2m.18+18^2-344\\ =\left(2m-18\right)^2-344\)
có \(\left(2m-18\right)^2\ge0\forall m\\ \Rightarrow\left(2m-18\right)^2-344\ge-344\)
vậy..
\(C=\left(x_1+x_2\right)^2+8x_1x_2\)
\(=\left(2m-6\right)^2+8\left(-6m-7\right)\)
\(=4m^2-24m+36-48m-56\)
\(=4m^2-72m-20\)
\(=4m^2-72m+324-344\)
\(=\left(2m-18\right)^2-344\ge-344\forall x\)
Dấu '=' xảy ra khi m=9
\(\Delta'=\left(m-3\right)^2-\left(-6m-7\right)=m^2-6m+9+6m+7=m^2+16>0\)
Vậy pt luôn có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=-6m-7\end{matrix}\right.\)
\(C=4\left(m-3\right)^2+8\left(-6m-7\right)\)
\(=4\left(m^2-6m+9\right)-48m-56=4m^2-72m-20\)
\(=4\left(m^2-2.9m+81-81\right)-20=4\left(m+9\right)^2-425\ge-425\)
Dấu ''='' xảy ra khi m = -9