Trong không gian với hệ tọa độ Oxyz cho các điểm A 0 ; - 1 ; 3 , B - 2 ; - 8 ; - 4 , C 2 ; - 1 ; 1 và mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 14 . Gọi M x M ; y M ; z M là điểm trên S sao cho biểu thức 3 M A → - 2 M B → + M C → đạt giá trị nhỏ nhất. Tính P = x M + y M
A. P = 0
B. P = 14
C. P = 6
D. P = 3 14
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;2), B(3;1;-1) và mặt phẳng (P): x+y+z-1=0. Gọi M ( a ; b ; c ) ∈ P sao cho 3 M A ⇀ - 2 M B ⇀ đạt giá trị nhỏ nhất. Tính S=9a+3b+6c.
A. 4
B. 3
C. 2
D. 1
Cho hệ tọa độ Oxy có A(1;3), B(-5;-3) Điểm M(x;y) ∈ △ : x - 2 y + 1 = 0 sao cho 2 M A → + M B → đạt gái trị nhỏ nhất. Giá trị x-2y là
A. 2
B. 5
C. – 3
D. – 1
Cho hàm số y = f(x) liên tục trên khoảng - ∞ ; + ∞ , thỏa mãn các điều kiện l i m x → 0 f x x = 2 và hàm số y = f 2 x sin 2 x k h i x > 0 a x + b k h i x ≤ 0 có đạo hàm tại điểm x = 0 Giá trị của biểu thức a + b bằng
A. 2
B. 3
C. 0
D. 1
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ a ; b . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau ?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' x 0 = 0
(2) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = f " x 0 = 0 thì điểm x 0 không là điểm cực trị của hàm số y = f x
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f(x)
(4) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = 0 , f " x 0 > 0 thì điểm x 0 là điểm cực đại của hàm số y = f(x)
A. 1
B. 2
C. 0
D. 3
Cho các số thực x, y, z thỏa mãn điều kiện log 16 x + y + z 2 x 2 + 2 y 2 + 2 z 2 + 1 = x x - 2 + y y - 2 + z z - 2
. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức F = x + y - z x + y + z bằng?
A. - 1 3
B. 2 3
C. - 2 3
D. 1 3
Xét x, y là các số thực không âm thỏa mãn điều kiện x + y = 2 . Tìm giá trị nhỏ nhất của biểu thức S = x 2 y 2 - 4 x y
A. min S = -3
B. min S = -4
C. min S = 0
D. min S = 1
Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng P : x + y - z + 2 = 0 và hai điểm A 7 ; - 4 ; - 3 , B 3 ; 4 ; 1 . Gọi M a ; b ; c là điểm thuộc P a < 2 sao cho tam giác AMB vuông tại M và có diện tích nhỏ nhất. Giá trị của biểu thức 3 a + 9 b + 63 c bằng
A. 140
B. -38
C. 154
D. -21
Trong không gian với hệ trục tọa độ Oxyz cho 3 điểm A(1;1;1). B(0;1;2), C(-2;1;4) và mặt phẳng ( P ) : x - y + z + 2 = 0 . Tìm điểm NÎ(P) sao cho S = 2 N A 2 + N B 2 + N C 2 đạt giá trị nhỏ nhất
A. N - 4 3 ; 2 ; 4 3
B. N(-2;0;1).
C. N - 1 2 ; 5 4 ; 3 4
D. N(-1;2;1)